BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21648095)

  • 1. Efficient one-step synthesis of bis-spiroketals from diynediols by π-Lewis acid-catalyzed hydroalkoxylation/hydration.
    Volchkov I; Sharma K; Cho EJ; Lee D
    Chem Asian J; 2011 Aug; 6(8):1961-6. PubMed ID: 21648095
    [No Abstract]   [Full Text] [Related]  

  • 2. A highly efficient access to spiroketals, mono-unsaturated spiroketals, and furans: Hg(II)-catalyzed cyclization of alkyne diols and triols.
    Ravindar K; Sridhar Reddy M; Deslongchamps P
    Org Lett; 2011 Jun; 13(12):3178-81. PubMed ID: 21604735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au-catalyzed cyclization of monopropargylic triols: an expedient synthesis of monounsaturated spiroketals.
    Aponick A; Li CY; Palmes JA
    Org Lett; 2009 Jan; 11(1):121-4. PubMed ID: 19049406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper(I)-catalyzed hydroalkoxylation/hydrogen-bonding-induced asymmetric hetero-Diels-Alder cycloaddition cascade: an approach to aromatic spiroketals.
    Li X; Xue J; Huang C; Li Y
    Chem Asian J; 2012 May; 7(5):903-6. PubMed ID: 22337642
    [No Abstract]   [Full Text] [Related]  

  • 5. A gold(I)-catalyzed intramolecular reaction of propargylic/homopropargylic alcohols with oxirane.
    Dai LZ; Shi M
    Chemistry; 2008; 14(23):7011-8. PubMed ID: 18600824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-dependent divergent functions of Sc(OTf)₃ in stereoselective epoxide-opening spiroketalizations.
    Sharma I; Wurst JM; Tan DS
    Org Lett; 2014 May; 16(9):2474-7. PubMed ID: 24742081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient synthesis of highly functionalized [5,6] aromatic spiroketals by hetero-Diels-Alder reaction.
    Zhou G; Zhu J; Xie Z; Li Y
    Org Lett; 2008 Mar; 10(5):721-4. PubMed ID: 18266379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem Prins/pinacol reaction for the synthesis of oxaspiro[4.5]decan-1-one scaffolds.
    Reddy BV; Gopal Reddy S; Ramana Reddy M; Pal Bhadra M; Sarma AV
    Org Biomol Chem; 2014 Oct; 12(37):7257-60. PubMed ID: 25103114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic asymmetric synthesis of aromatic spiroketals by spinphox/iridium(I)-catalyzed hydrogenation and spiroketalization of α,α'-bis(2-hydroxyarylidene) ketones.
    Wang X; Han Z; Wang Z; Ding K
    Angew Chem Int Ed Engl; 2012 Jan; 51(4):936-40. PubMed ID: 22170855
    [No Abstract]   [Full Text] [Related]  

  • 10. Efficient Synthesis of 3,3'-Mixed Bisindoles via Lewis Acid Catalyzed Reaction of Spiro-epoxyoxindoles and Indoles.
    Hajra S; Maity S; Maity R
    Org Lett; 2015 Jul; 17(14):3430-3. PubMed ID: 26158390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Singlet oxygen-mediated synthesis of bis-spiroketals found in azaspiracids.
    Triantafyllakis M; Tofi M; Montagnon T; Kouridaki A; Vassilikogiannakis G
    Org Lett; 2014 Jun; 16(11):3150-3. PubMed ID: 24869923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereocontrol of 5,5-spiroketals in the synthesis of cephalosporolide H epimers.
    Tlais SF; Dudley GB
    Org Lett; 2010 Oct; 12(20):4698-701. PubMed ID: 20860404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formal total synthesis of okadaic acid via regiocontrolled gold(I)-catalyzed spiroketalizations.
    Fang C; Pang Y; Forsyth CJ
    Org Lett; 2010 Oct; 12(20):4528-31. PubMed ID: 20849144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective syntheses of spiroketals via a tandem reaction of Cu(I)-catalyzed cycloetherification and hydrogen-bond-induced [4 + 2] cyclization.
    Tian T; Li L; Xue J; Zhang J; Li Y
    J Org Chem; 2015 Apr; 80(8):4189-200. PubMed ID: 25811426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hetero-Diels-Alder approach to spiroketals.
    Rizzacasa MA; Pollex A
    Org Biomol Chem; 2009 Mar; 7(6):1053-9. PubMed ID: 19262920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lewis acid-catalyzed stereoselective lactonization and subsequent glycosidation of 2-C-malonyl carbohydrates.
    Pimpalpalle TM; Vidadala SR; Hotha S; Linker T
    Chem Commun (Camb); 2011 Oct; 47(37):10434-6. PubMed ID: 21833421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular iodoetherification of ene or diene ketals: facile synthesis of spiroketals.
    Fujioka H; Nakahara K; Hirose H; Hirano K; Oki T; Kita Y
    Chem Commun (Camb); 2011 Jan; 47(3):1060-2. PubMed ID: 21076755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyketide assembly by alkene-alkyne reductive cross-coupling: spiroketals through the union of homoallylic alcohols.
    Canterbury DP; Micalizio GC
    J Am Chem Soc; 2010 Jun; 132(22):7602-4. PubMed ID: 20476790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient Rh(I) and Ir(I) single and dual metal catalysed dihydroalkoxylation reactions of alkyne diols.
    Ho JH; Hodgson R; Wagler J; Messerle BA
    Dalton Trans; 2010 May; 39(17):4062-9. PubMed ID: 20390169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of the ABCD trioxadispiroketal subunit of azaspiracid-1: an iodoetherification-dehydroiodination strategy for complex spiroketals.
    Li X; Li J; Mootoo DR
    Org Lett; 2007 Oct; 9(21):4303-6. PubMed ID: 17880232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.