These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Polar ionic currents around embryos of Lymnaea stagnalis during gastrulation and organogenesis. Créton R; Zivkovic D; Zwaan G; Dohmen R Int J Dev Biol; 1993 Sep; 37(3):425-31. PubMed ID: 8292536 [TBL] [Abstract][Full Text] [Related]
4. Scattering theory of current-induced spin polarization. Jacquod P Nanotechnology; 2010 Jul; 21(27):274006. PubMed ID: 20571193 [TBL] [Abstract][Full Text] [Related]
5. Optical ray tracing for crossed beam photothermal deflection spectroscopy. Sell JA Appl Opt; 1987 Jan; 26(2):336-42. PubMed ID: 20454134 [TBL] [Abstract][Full Text] [Related]
6. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution. Papagiannakis E; Vengris M; Larsen DS; van Stokkum IH; Hiller RG; van Grondelle R J Phys Chem B; 2006 Jan; 110(1):512-21. PubMed ID: 16471563 [TBL] [Abstract][Full Text] [Related]
7. Optimization of the double pump-probe technique: decoupling the triplet yield and cross section. Peceli D; Webster S; Fishman DA; Cirloganu CM; Hu H; Przhonska OV; Kurdyukov VV; Slominsky YL; Tolmachev AI; Kachkovski AD; Dasari RR; Barlow S; Marder SR; Hagan DJ; Van Stryland EW J Phys Chem A; 2012 May; 116(20):4833-41. PubMed ID: 22536876 [TBL] [Abstract][Full Text] [Related]
8. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy. Banno M; Ohta K; Yamaguchi S; Hirai S; Tominaga K Acc Chem Res; 2009 Sep; 42(9):1259-69. PubMed ID: 19754112 [TBL] [Abstract][Full Text] [Related]
9. No drive line, no seal, no bearing and no wear: magnetics for impeller suspension and flow assessment in a new VAD. Huber CH; Tozzi P; Hurni M; von Segesser LK Interact Cardiovasc Thorac Surg; 2004 Jun; 3(2):336-40. PubMed ID: 17670254 [TBL] [Abstract][Full Text] [Related]
10. An optical pump-probe technique for measuring the thermal conductivity of liquids. Schmidt A; Chiesa M; Chen X; Chen G Rev Sci Instrum; 2008 Jun; 79(6):064902. PubMed ID: 18601430 [TBL] [Abstract][Full Text] [Related]
11. Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters. Kang K; Koh YK; Chiritescu C; Zheng X; Cahill DG Rev Sci Instrum; 2008 Nov; 79(11):114901. PubMed ID: 19045905 [TBL] [Abstract][Full Text] [Related]
12. Optimal control theory for a target state distributed in time: optimizing the probe-pulse signal of a pump-probe-scheme. Kaiser A; May V J Chem Phys; 2004 Aug; 121(6):2528-35. PubMed ID: 15281849 [TBL] [Abstract][Full Text] [Related]
13. Standard deviations of composition measurements in atom probe analyses. Part I conventional 1D atom probe. Danoix F; Grancher G; Bostel A; Blavette D Ultramicroscopy; 2007 Sep; 107(9):734-8. PubMed ID: 17493755 [TBL] [Abstract][Full Text] [Related]
14. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors. Euser TG; Harding PJ; Vos WL Rev Sci Instrum; 2009 Jul; 80(7):073104. PubMed ID: 19655940 [TBL] [Abstract][Full Text] [Related]
19. Pump-probe spectroscopy of molecules driven by infrared field in both ground and excited electronic states. Guimarães FF; Gel'mukhanov F J Chem Phys; 2006 Nov; 125(20):204313. PubMed ID: 17144706 [TBL] [Abstract][Full Text] [Related]
20. Transient absorption studies of vibrational relaxation and photophysics of Prussian blue and ruthenium purple nanoparticles. Weidinger D; Brown DJ; Owrutsky JC J Chem Phys; 2011 Mar; 134(12):124510. PubMed ID: 21456679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]