These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 21649510)

  • 1. Changes in carbohydrate metabolism in Plasmopara viticola-infected grapevine leaves.
    Gamm M; Héloir MC; Bligny R; Vaillant-Gaveau N; Trouvelot S; Alcaraz G; Frettinger P; Clément C; Pugin A; Wendehenne D; Adrian M
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1061-73. PubMed ID: 21649510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser Microdissection of Grapevine Leaves Reveals Site-Specific Regulation of Transcriptional Response to Plasmopara viticola.
    Lenzi L; Caruso C; Bianchedi PL; Pertot I; Perazzolli M
    Plant Cell Physiol; 2016 Jan; 57(1):69-81. PubMed ID: 26546320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural analysis of Vitis vinifera leaf tissues showing atypical symptoms of Plasmopara viticola.
    Musetti R; Stringher L; Borselli S; Vecchione A; Zulini L; Pertot I
    Micron; 2005; 36(1):73-80. PubMed ID: 15582481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis Vinifera) and primes plant immunity mechanisms.
    Rienth M; Crovadore J; Ghaffari S; Lefort F
    PLoS One; 2019; 14(9):e0222854. PubMed ID: 31560730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola.
    Oerke EC; Herzog K; Toepfer R
    J Exp Bot; 2016 Oct; 67(18):5529-5543. PubMed ID: 27567365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A beta-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death.
    Trouvelot S; Varnier AL; Allègre M; Mercier L; Baillieul F; Arnould C; Gianinazzi-Pearson V; Klarzynski O; Joubert JM; Pugin A; Daire X
    Mol Plant Microbe Interact; 2008 Feb; 21(2):232-43. PubMed ID: 18184067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production.
    Liu G; Thornburg RW
    Plant J; 2012 May; 70(3):377-88. PubMed ID: 22151247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV.
    Li J; Ezquer I; Bahaji A; Montero M; Ovecka M; Baroja-Fernández E; Muñoz FJ; Mérida A; Almagro G; Hidalgo M; Sesma MT; Pozueta-Romero J
    Mol Plant Microbe Interact; 2011 Oct; 24(10):1165-78. PubMed ID: 21649509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of effector genes from the phytopathogenic Oomycete Plasmopara viticola through the analysis of gene expression in germinated zoospores.
    Mestre P; Piron MC; Merdinoglu D
    Fungal Biol; 2012 Jul; 116(7):825-35. PubMed ID: 22749169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct regulation in inflorescence carbohydrate metabolism according to grapevine cultivars during floral development.
    Sawicki M; Jacquens L; Baillieul F; Clément C; Vaillant-Gaveau N; Jacquard C
    Physiol Plant; 2015 Jul; 154(3):447-67. PubMed ID: 25585972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reduction of starch accumulation in transgenic sugarcane cell suspension culture lines.
    Ferreira SJ; Kossmann J; Lloyd JR; Groenewald JH
    Biotechnol J; 2008 Nov; 3(11):1398-406. PubMed ID: 18729045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mango starch degradation. II. The binding of alpha-amylase and beta-amylase to the starch granule.
    Peroni FH; Koike C; Louro RP; Purgatto E; do Nascimento JR; Lajolo FM; Cordenunsi BR
    J Agric Food Chem; 2008 Aug; 56(16):7416-21. PubMed ID: 18656927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola.
    Kiefer B; Riemann M; Büche C; Kassemeyer HH; Nick P
    Planta; 2002 Jul; 215(3):387-93. PubMed ID: 12111219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: application to the evaluation of resistance to downy mildew.
    Kim Khiook IL; Schneider C; Heloir MC; Bois B; Daire X; Adrian M; Trouvelot S
    J Microbiol Methods; 2013 Nov; 95(2):235-44. PubMed ID: 23994353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola.
    Polesani M; Desario F; Ferrarini A; Zamboni A; Pezzotti M; Kortekamp A; Polverari A
    BMC Genomics; 2008 Mar; 9():142. PubMed ID: 18366764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific adjustments in grapevine leaf proteome discriminating resistant and susceptible grapevine genotypes to Plasmopara viticola.
    Figueiredo A; Martins J; Sebastiana M; Guerreiro A; Silva A; Matos AR; Monteiro F; Pais MS; Roepstorff P; Coelho AV
    J Proteomics; 2017 Jan; 152():48-57. PubMed ID: 27989945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two simplified fluorescent staining techniques to observe infection structures of the oomycete Plasmopara viticola in grapevine leaf tissues.
    Díez-Navajas AM; Greif C; Poutaraud A; Merdinoglu D
    Micron; 2007; 38(6):680-3. PubMed ID: 17107808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early stage metabolic events associated with the establishment of Vitis vinifera - Plasmopara viticola compatible interaction.
    Nascimento R; Maia M; Ferreira AEN; Silva AB; Freire AP; Cordeiro C; Silva MS; Figueiredo A
    Plant Physiol Biochem; 2019 Apr; 137():1-13. PubMed ID: 30710794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation.
    Peressotti E; Duchêne E; Merdinoglu D; Mestre P
    J Microbiol Methods; 2011 Feb; 84(2):265-71. PubMed ID: 21167874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty Acid Desaturases: Uncovering Their Involvement in Grapevine Defence against Downy Mildew.
    Laureano G; Cavaco AR; Matos AR; Figueiredo A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34067363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.