BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21649863)

  • 1. Role of L-arginine uptake mechanisms in renal blood flow responses to angiotensin II in rats.
    Rajapakse NW; Mattson DL
    Acta Physiol (Oxf); 2011 Nov; 203(3):391-400. PubMed ID: 21649863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal medullary nitric oxide deficit of Dahl S rats enhances hypertensive actions of angiotensin II.
    Szentiványi M; Zou AP; Mattson DL; Soares P; Moreno C; Roman RJ; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2002 Jul; 283(1):R266-72. PubMed ID: 12069953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal intramedullary infusion of L-arginine prevents reduction of medullary blood flow and hypertension in Dahl salt-sensitive rats.
    Miyata N; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):446-50. PubMed ID: 9931145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that renal arginine transport is impaired in spontaneously hypertensive rats.
    Rajapakse NW; Kuruppu S; Hanchapola I; Venardos K; Mattson DL; Smith AI; Kaye DM; Evans RG
    Am J Physiol Renal Physiol; 2012 Jun; 302(12):F1554-62. PubMed ID: 22442214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin II and nitric oxide in neural control of intrarenal blood flow.
    Rajapakse NW; Sampson AK; Eppel GA; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R745-54. PubMed ID: 15890788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment.
    Szentiványi M; Maeda CY; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):440-5. PubMed ID: 9931144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms mediating sodium-induced pressor responses in the PVN of Dahl rats.
    Gabor A; Leenen FH
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1338-49. PubMed ID: 21795639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide in responses of regional kidney blood flow to vasoactive agents in anesthetized rabbits.
    Rajapakse NW; Oliver JJ; Evans RG
    J Cardiovasc Pharmacol; 2002 Aug; 40(2):210-9. PubMed ID: 12131550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI; García-Salom M; Tornel J; de Gasparo M; Fenoy FJ
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renoprotective effects of nitric oxide in angiotensin II-induced hypertension in the rat.
    Chin SY; Wang CT; Majid DS; Navar LG
    Am J Physiol; 1998 May; 274(5):F876-82. PubMed ID: 9612324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired relaxation of cerebral arteries in the absence of elevated salt intake in normotensive congenic rats carrying the Dahl salt-sensitive renin gene.
    Durand MJ; Moreno C; Greene AS; Lombard JH
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1865-74. PubMed ID: 20852041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Renal hemodynamic interactions of nitric oxide and angiotensin II].
    Nakanishi K; Hamada K; Hara N; Nagai Y; Nakamura K
    Nihon Jinzo Gakkai Shi; 1998 Nov; 40(8):567-72. PubMed ID: 9893455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats.
    Palm F; Connors SG; Mendonca M; Welch WJ; Wilcox CS
    Hypertension; 2008 Feb; 51(2):345-51. PubMed ID: 18158356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal vascular effects of frusemide in the rat: influence of salt loading and the role of angiotensin II.
    Dobrowolski L; Badzyńska B; Grzelec-Mojzesowicz M; Sadowski J
    Exp Physiol; 2001 Sep; 86(5):611-6. PubMed ID: 11571489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medullary thick ascending limb buffer vasoconstriction of renal outer-medullary vasa recta in salt-resistant but not salt-sensitive rats.
    O'Connor PM; Cowley AW
    Hypertension; 2012 Oct; 60(4):965-72. PubMed ID: 22926950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.