These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 21650178)

  • 41. Circular random motion in diatom gliding under isotropic conditions.
    Gutiérrez-Medina B; Guerra AJ; Maldonado AI; Rubio YC; Meza JV
    Phys Biol; 2014 Nov; 11(6):066006. PubMed ID: 25393453
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alternating electric fields induce a period-dependent motion of Escherichia coli in three-dimension near a conductive surface.
    Zhou X; Qi M; Huang G; Ma C; Bao L; Gong X; Zhang G; Zeng EY
    Biointerphases; 2019 Feb; 14(1):011005. PubMed ID: 30786720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptive Escape of
    Feng P; Liu J; Bao LJ; Zeng EY; Ma C; Wang L; Zhang G; Gong X
    Langmuir; 2024 Jul; 40(28):14281-14290. PubMed ID: 38967331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aligned Immobilization of Proteins Using AC Electric Fields.
    Laux EM; Knigge X; Bier FF; Wenger C; Hölzel R
    Small; 2016 Mar; 12(11):1514-20. PubMed ID: 26779699
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrokinetic movement of Escherichia coli in capillaries.
    Liu Z; Chen W; Papadopoulos KD
    Environ Microbiol; 1999 Feb; 1(1):99-102. PubMed ID: 11207722
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled electrophoretic deposition of bacteria to surfaces for the design of biofilms.
    Poortinga AT; Bos R; Busscher HJ
    Biotechnol Bioeng; 2000 Jan; 67(1):117-20. PubMed ID: 10581443
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface tension determination through measurements of resonance oscillation of a small surface using dielectric force by a localized alternating current electric field.
    Tsukahara S; Tsuruta T; Fujiwara T
    Analyst; 2013 Apr; 138(7):2110-7. PubMed ID: 23420387
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rhythmic motion of a droplet under a dc electric field.
    Hase M; Watanabe SN; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046301. PubMed ID: 17155167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Role of Cathodic Current in Plasma Electrolytic Oxidation of Aluminum: Phenomenological Concepts of the "Soft Sparking" Mode.
    Rogov AB; Yerokhin A; Matthews A
    Langmuir; 2017 Oct; 33(41):11059-11069. PubMed ID: 28834680
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction.
    Aogaki R; Sugiyama A; Miura M; Oshikiri Y; Miura M; Morimoto R; Takagi S; Mogi I; Yamauchi Y
    Sci Rep; 2016 Jul; 6():28927. PubMed ID: 27377532
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Capture into resonance in dynamics of a classical hydrogen atom in an oscillating electric field.
    Neishtadt A; Vasiliev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056623. PubMed ID: 16089684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The electrochemistry of the bacterial surface.
    JAMES AM
    Prog Biophys Biophys Chem; 1957; 8():95-142. PubMed ID: 13527527
    [No Abstract]   [Full Text] [Related]  

  • 53. [Bacterial flagellae, organs for active motion or parts of the external layer].
    KOFFLER H; MALLETT GE
    Zentralbl Bakteriol Orig; 1952 Jun; 158(3-5):357-8. PubMed ID: 14959345
    [No Abstract]   [Full Text] [Related]  

  • 54. Electrochemical biofilm control: a review.
    Sultana ST; Babauta JT; Beyenal H
    Biofouling; 2015; 31(9-10):745-58. PubMed ID: 26592420
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Semiquantitative Performance and Mechanism Evaluation of Carbon Nanomaterials as Cathode Coatings for Microbial Fouling Reduction.
    Zhang Q; Nghiem J; Silverberg GJ; Vecitis CD
    Appl Environ Microbiol; 2015 Jul; 81(14):4744-55. PubMed ID: 25956770
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacterial translational motion on the electrode surface under anodic electric field.
    Kang H; Shim S; Lee SJ; Yoon J; Ahn KH
    Environ Sci Technol; 2011 Jul; 45(13):5769-74. PubMed ID: 21650178
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of electric currents on bacterial detachment and inactivation.
    Hong SH; Jeong J; Shim S; Kang H; Kwon S; Ahn KH; Yoon J
    Biotechnol Bioeng; 2008 Jun; 100(2):379-86. PubMed ID: 18080346
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prevention of Pseudomonas aeruginosa adhesion by electric currents.
    Shim S; Hong SH; Tak Y; Yoon J
    Biofouling; 2011 Feb; 27(2):217-24. PubMed ID: 21279861
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of localised, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms.
    Perez-Roa RE; Tompkins DT; Paulose M; Grimes CA; Anderson MA; Noguera DR
    Biofouling; 2006; 22(5-6):383-90. PubMed ID: 17178571
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms.
    Klausen M; Gjermansen M; Kreft JU; Tolker-Nielsen T
    FEMS Microbiol Lett; 2006 Aug; 261(1):1-11. PubMed ID: 16842351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.