BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 21650468)

  • 21. RAGE/NF-κB pathway mediates hypoxia-induced insulin resistance in 3T3-L1 adipocytes.
    Tang Y; Wang J; Cai W; Xu J
    Biochem Biophys Res Commun; 2020 Jan; 521(1):77-83. PubMed ID: 31629469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro chronic glycation induces AGEs accumulation reducing insulin-stimulated glucose uptake and increasing GLP1R in adipocytes.
    Chilelli NC; Faggian A; Favaretto F; Milan G; Compagnin C; Dassie F; Bettini S; Roverso M; Seraglia R; Lapolla A; Vettor R
    Am J Physiol Endocrinol Metab; 2021 May; 320(5):E976-E988. PubMed ID: 33779307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new indanedione derivative alleviates symptoms of diabetes by modulating RAGE-NF-kappaB pathway in db/db mice.
    Khan G; Aftab MF; Bano B; Khan KM; Murtaza M; Siddiqui S; Rehman MH; Waraich RS
    Biochem Biophys Res Commun; 2018 Jul; 501(4):863-870. PubMed ID: 29778537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Permethrin alters adipogenesis in 3T3-L1 adipocytes and causes insulin resistance in C2C12 myotubes.
    Kim J; Park Y; Yoon KS; Clark JM; Park Y
    J Biochem Mol Toxicol; 2014 Sep; 28(9):418-24. PubMed ID: 24911977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41.
    Han JH; Kim IS; Jung SH; Lee SG; Son HY; Myung CS
    PLoS One; 2014; 9(4):e95268. PubMed ID: 24748202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving hyperglycemic effect of FGF-21 is associated with alleviating inflammatory state in diabetes.
    Wang N; Xu TY; Zhang X; Li JY; Wang YX; Guo XC; Li SM; Wang WF; Li DS
    Int Immunopharmacol; 2018 Mar; 56():301-309. PubMed ID: 29414665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1.
    Cai W; Ramdas M; Zhu L; Chen X; Striker GE; Vlassara H
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15888-93. PubMed ID: 22908267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calycosin Rebalances Advanced Glycation End Products-Induced Glucose Uptake Dysfunction of Hepatocyte In Vitro.
    Xu Y; Xiong J; Zhao Y; He B; Zheng Z; Chu G; Zhu Q
    Am J Chin Med; 2015; 43(6):1191-210. PubMed ID: 26446203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The transcriptional response to oxidative stress is part of, but not sufficient for, insulin resistance in adipocytes.
    Chaudhuri R; Krycer JR; Fazakerley DJ; Fisher-Wellman KH; Su Z; Hoehn KL; Yang JYH; Kuncic Z; Vafaee F; James DE
    Sci Rep; 2018 Jan; 8(1):1774. PubMed ID: 29379070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors in serum from type 2 diabetes patients can cause cellular insulin resistance.
    Renström F; Burén J; Svensson MK; Eriksson JW
    Horm Metab Res; 2009 Oct; 41(10):767-72. PubMed ID: 19764108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CD36-mediated endocytic uptake of advanced glycation end products (AGE) in mouse 3T3-L1 and human subcutaneous adipocytes.
    Kuniyasu A; Ohgami N; Hayashi S; Miyazaki A; Horiuchi S; Nakayama H
    FEBS Lett; 2003 Feb; 537(1-3):85-90. PubMed ID: 12606036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of Glucose Transport in Adipocytes by Interleukin-4.
    Michurina S; Stafeev I; Beloglazova I; Zubkova E; Mamontova E; Kopylov A; Shevchenko E; Menshikov M; Parfyonova Y
    J Interferon Cytokine Res; 2022 Mar; 42(3):127-136. PubMed ID: 35298287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insulin resistance: Review of the underlying molecular mechanisms.
    Yaribeygi H; Farrokhi FR; Butler AE; Sahebkar A
    J Cell Physiol; 2019 Jun; 234(6):8152-8161. PubMed ID: 30317615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes.
    Krycer JR; Elkington SD; Diaz-Vegas A; Cooke KC; Burchfield JG; Fisher-Wellman KH; Cooney GJ; Fazakerley DJ; James DE
    J Biol Chem; 2020 Jan; 295(1):99-110. PubMed ID: 31744882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucose as an agent of post-translational modification in diabetes--New cardiac epigenetic insights.
    Mellor KM; Brimble MA; Delbridge LM
    Life Sci; 2015 May; 129():48-53. PubMed ID: 24699006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural origins of the insulin-mimetic activity of bis(acetylacetonato)oxovanadium(IV).
    Makinen MW; Brady MJ
    J Biol Chem; 2002 Apr; 277(14):12215-20. PubMed ID: 11815612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-Activity Relationship of Synthetic Ginkgolic Acid Analogs for Treating Type 2 Diabetes by PTPN9 Inhibition.
    Kim J; Son J; Ahn D; Nam G; Zhao X; Park H; Jeong W; Chung SJ
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a physiological insulin resistance model in human stem cell-derived adipocytes.
    Friesen M; Khalil AS; Barrasa MI; Jeppesen JF; Mooney DJ; Jaenisch R
    Sci Adv; 2022 Jun; 8(24):eabn7298. PubMed ID: 35714187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates.
    Ramalingam L; Oh E; Thurmond DC
    Cell Mol Life Sci; 2013 Aug; 70(16):2815-34. PubMed ID: 23052216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current views on type 2 diabetes.
    Lin Y; Sun Z
    J Endocrinol; 2010 Jan; 204(1):1-11. PubMed ID: 19770178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.