These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2165062)

  • 1. Cholesterol sulfate inhibits the fusion of Sendai virus to biological and model membranes.
    Cheetham JJ; Epand RM; Andrews M; Flanagan TD
    J Biol Chem; 1990 Jul; 265(21):12404-9. PubMed ID: 2165062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of membrane physical properties on the fusion of Sendai virus with human erythrocyte ghosts and liposomes. Analysis of kinetics and extent of fusion.
    Cheetham JJ; Nir S; Johnson E; Flanagan TD; Epand RM
    J Biol Chem; 1994 Feb; 269(7):5467-72. PubMed ID: 8106528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the target membrane structure in fusion with Sendai virus.
    Sarkar DP; Blumenthal R
    Membr Biochem; 1987-1988; 7(4):231-47. PubMed ID: 2855807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the ganglioside GD1a as a receptor for Sendai virus.
    Epand RM; Nir S; Parolin M; Flanagan TD
    Biochemistry; 1995 Jan; 34(3):1084-9. PubMed ID: 7827024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fusion temperature on the lateral mobility of Sendai virus glycoproteins in erythrocyte membranes and on cell fusion indicate that glycoprotein mobilization is required for cell fusion.
    Aroeti B; Henis YI
    Biochemistry; 1988 Jul; 27(15):5654-61. PubMed ID: 2846047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sendai virus-induced hemolysis: reduction in heterogeneity of erythrocyte lipid bilayer fluidity.
    Lyles DS; Landsberger FR
    Proc Natl Acad Sci U S A; 1977 May; 74(5):1918-22. PubMed ID: 194242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent inhibition of viral fusion by the lipophosphoglycan of Leishmania donovani.
    Miao L; Stafford A; Nir S; Turco SJ; Flanagan TD; Epand RM
    Biochemistry; 1995 Apr; 34(14):4676-83. PubMed ID: 7718571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface properties of Sendai virus envelope.
    Abidi TF; Yeagle PL
    Biochim Biophys Acta; 1984 Sep; 775(3):419-25. PubMed ID: 6087907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution and fusogenic properties of Sendai virus envelopes.
    Harmsen MC; Wilschut J; Scherphof G; Hulstaert C; Hoekstra D
    Eur J Biochem; 1985 Jun; 149(3):591-9. PubMed ID: 2408889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of Sendai virus with liposomes: dependence on the viral fusion protein (F) and the lipid composition of liposomes.
    Hsu MC; Scheid A; Choppin PW
    Virology; 1983 Apr; 126(1):361-9. PubMed ID: 6302992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of fusion of Sendai virus: role of hydrophobic interactions and mobility constraints of viral membrane proteins. Effects of polyethylene glycol.
    Hoekstra D; Klappe K; Hoff H; Nir S
    J Biol Chem; 1989 Apr; 264(12):6786-92. PubMed ID: 2540161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantation of isolated carriers and receptors into living cells by Sendai virus envelope-mediated fusion.
    Loyter A; Chejanovsky N; Citovsky V
    Methods Enzymol; 1989; 171():829-50. PubMed ID: 2556627
    [No Abstract]   [Full Text] [Related]  

  • 13. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides.
    Kelsey DR; Flanagan TD; Young JE; Yeagle PL
    Virology; 1991 Jun; 182(2):690-702. PubMed ID: 1850923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sendai virus-erythrocyte membrane interaction: quantitative and kinetic analysis of viral binding, dissociation, and fusion.
    Hoekstra D; Klappe K
    J Virol; 1986 Apr; 58(1):87-95. PubMed ID: 3005662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric fusion between synthetic di-n-dodecylphosphate vesicles and virus membranes.
    Fonteijn TA; Engberts JB; Nir S; Hoekstra D
    Biochim Biophys Acta; 1992 Oct; 1110(2):185-92. PubMed ID: 1327141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Sendai virus envelope fusion with erythrocyte membranes and virus-induced hemolysis.
    Lyles DS; Landsberger FR
    Biochemistry; 1979 Nov; 18(23):5088-95. PubMed ID: 227446
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition of sendai virus-induced hemolysis by long chain fatty acids.
    MacDonald RC; Dalle Ore V; MacDonald RI
    Virology; 1984 Apr; 134(1):103-17. PubMed ID: 6324464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusion of Sendai virions with phosphatidylcholine-cholesterol liposomes reflects the viral activity required for fusion with biological membranes.
    Citovsky V; Blumenthal R; Loyter A
    FEBS Lett; 1985 Dec; 193(2):135-40. PubMed ID: 2998879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of calcium and cholesterol sulphate induces membrane destabilization and fusion: implications for the acrosome reaction.
    Cheetham JJ; Chen RJ; Epand RM
    Biochim Biophys Acta; 1990 May; 1024(2):367-72. PubMed ID: 2354184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion of Sendai virions or reconstituted Sendai virus envelopes with liposomes or erythrocyte membranes lacking virus receptors.
    Citovsky V; Loyter A
    J Biol Chem; 1985 Oct; 260(22):12072-7. PubMed ID: 2995357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.