These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 21651963)

  • 1. Strategies and tools to explore protein S-nitrosylation.
    Raju K; Doulias PT; Tenopoulou M; Greene JL; Ischiropoulos H
    Biochim Biophys Acta; 2012 Jun; 1820(6):684-8. PubMed ID: 21651963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of protein function and signaling by reversible cysteine S-nitrosylation.
    Gould N; Doulias PT; Tenopoulou M; Raju K; Ischiropoulos H
    J Biol Chem; 2013 Sep; 288(37):26473-9. PubMed ID: 23861393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site specific identification of endogenous S-nitrosocysteine proteomes.
    Doulias PT; Tenopoulou M; Raju K; Spruce LA; Seeholzer SH; Ischiropoulos H
    J Proteomics; 2013 Oct; 92():195-203. PubMed ID: 23748021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation.
    Doulias PT; Greene JL; Greco TM; Tenopoulou M; Seeholzer SH; Dunbrack RL; Ischiropoulos H
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16958-63. PubMed ID: 20837516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation.
    Doulias PT; Tenopoulou M; Greene JL; Raju K; Ischiropoulos H
    Sci Signal; 2013 Jan; 6(256):rs1. PubMed ID: 23281369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous S-nitrosocysteine proteomic inventories identify a core of proteins in heart metabolic pathways.
    Lau B; Fazelinia H; Mohanty I; Raimo S; Tenopoulou M; Doulias PT; Ischiropoulos H
    Redox Biol; 2021 Nov; 47():102153. PubMed ID: 34610554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic approaches to evaluate protein S-nitrosylation in disease.
    López-Sánchez LM; López-Pedrera C; Rodríguez-Ariza A
    Mass Spectrom Rev; 2014; 33(1):7-20. PubMed ID: 23775552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation.
    Ben-Lulu S; Ziv T; Admon A; Weisman-Shomer P; Benhar M
    Mol Cell Proteomics; 2014 Oct; 13(10):2573-83. PubMed ID: 24973421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation.
    Qu Z; Greenlief CM; Gu Z
    J Proteome Res; 2016 Jan; 15(1):1-14. PubMed ID: 26544640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S-Nitrosylation signaling regulates cellular protein interactions.
    Marozkina NV; Gaston B
    Biochim Biophys Acta; 2012 Jun; 1820(6):722-9. PubMed ID: 21745537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodologies for the characterization, identification and quantification of S-nitrosylated proteins.
    Foster MW
    Biochim Biophys Acta; 2012 Jun; 1820(6):675-83. PubMed ID: 21440604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation.
    Nakamura T; Lipton SA
    Neurochem Res; 2016 Mar; 41(3):510-4. PubMed ID: 26118537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of site-specific proteomic approach for study protein S-nitrosylation.
    Liu M; Talmadge JE; Ding SJ
    Amino Acids; 2012 May; 42(5):1541-51. PubMed ID: 22476348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of protein S-nitrosylation.
    Torta F; Usuelli V; Malgaroli A; Bachi A
    Proteomics; 2008 Nov; 8(21):4484-94. PubMed ID: 18846506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation.
    Seth D; Hess DT; Hausladen A; Wang L; Wang YJ; Stamler JS
    Mol Cell; 2018 Feb; 69(3):451-464.e6. PubMed ID: 29358078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic profiling of nitrosative stress: protein S-oxidation accompanies S-nitrosylation.
    Wang YT; Piyankarage SC; Williams DL; Thatcher GR
    ACS Chem Biol; 2014 Mar; 9(3):821-30. PubMed ID: 24397869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation.
    Wolhuter K; Whitwell HJ; Switzer CH; Burgoyne JR; Timms JF; Eaton P
    Mol Cell; 2018 Feb; 69(3):438-450.e5. PubMed ID: 29358077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level.
    Puyaubert J; Fares A; Rézé N; Peltier JB; Baudouin E
    Plant Sci; 2014 Feb; 215-216():150-6. PubMed ID: 24388526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein S-nitrosylation in photosynthetic organisms: A comprehensive overview with future perspectives.
    Zaffagnini M; De Mia M; Morisse S; Di Giacinto N; Marchand CH; Maes A; Lemaire SD; Trost P
    Biochim Biophys Acta; 2016 Aug; 1864(8):952-66. PubMed ID: 26861774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.