These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 2165214)
41. Altered pH homeostasis modulates the glutathione peroxidase mimics and other antioxidant properties of diphenyl diselenide. Ogunmoyole T; Rocha JB; Okoronkwo AE; Kade IJ Chem Biol Interact; 2009 Dec; 182(2-3):106-11. PubMed ID: 19737547 [TBL] [Abstract][Full Text] [Related]
42. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Fischbacher A; von Sonntag C; Schmidt TC Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840 [TBL] [Abstract][Full Text] [Related]
43. Formation of hydroxyl radicals in biological systems. Does myoglobin stimulate hydroxyl radical formation from hydrogen peroxide? Puppo A; Halliwell B Free Radic Res Commun; 1988; 4(6):415-22. PubMed ID: 2854107 [TBL] [Abstract][Full Text] [Related]
44. The generation of hydroxyl and alkoxyl radicals from the interaction of ferrous bipyridyl with peroxides. Winston GW; Harvey W; Berl L; Cederbaum AI Biochem J; 1983 Nov; 216(2):415-21. PubMed ID: 6318737 [TBL] [Abstract][Full Text] [Related]
45. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Maezono T; Tokumura M; Sekine M; Kawase Y Chemosphere; 2011 Mar; 82(10):1422-30. PubMed ID: 21146853 [TBL] [Abstract][Full Text] [Related]
46. Catalase enhances damage to DNA by bleomycin-iron(II): the role of hydroxyl radicals. Gutteridge JM; Beard AP; Quinlan GJ Biochem Int; 1985 Mar; 10(3):441-9. PubMed ID: 2409975 [TBL] [Abstract][Full Text] [Related]
47. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Yoon J; Lee Y; Kim S Water Sci Technol; 2001; 44(5):15-21. PubMed ID: 11695453 [TBL] [Abstract][Full Text] [Related]
48. Superoxide dismutase inhibits the superoxide-driven Fenton reaction at two different levels. Implications for a wider protective role. Gutteridge JM FEBS Lett; 1985 Jun; 185(1):19-23. PubMed ID: 2987038 [TBL] [Abstract][Full Text] [Related]
49. Hydroxyl radical scavenging activity of a new ophthalmic viscosurgical device. Maugeri F; Maltese A; Ward KW; Bucolo C Curr Eye Res; 2007 Feb; 32(2):105-11. PubMed ID: 17364743 [TBL] [Abstract][Full Text] [Related]
50. Modification of the deoxyribose test to detect strong iron binding. Sadowska-Bartosz I; Galiniak S; Bartosz G Acta Biochim Pol; 2017; 64(1):195-198. PubMed ID: 27991936 [TBL] [Abstract][Full Text] [Related]
51. Role of guanosine triphosphate in ferric ion-linked Fenton chemistry. Biaglow JE; Held KD; Manevich Y; Tuttle S; Kachur A; Uckun F Radiat Res; 1996 May; 145(5):554-62. PubMed ID: 8619020 [TBL] [Abstract][Full Text] [Related]
52. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Hug SJ; Leupin O Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713 [TBL] [Abstract][Full Text] [Related]
53. Reevaluating the role of 1,10-phenanthroline in oxidative reactions involving ferrous ions and DNA damage. de Avellar IG; Magalhães MM; Silva AB; Souza LL; Leitão AC; Hermes-Lima M Biochim Biophys Acta; 2004 Nov; 1675(1-3):46-53. PubMed ID: 15535966 [TBL] [Abstract][Full Text] [Related]
54. Antioxidant behaviour of caffeine: efficient scavenging of hydroxyl radicals. Shi X; Dalal NS; Jain AC Food Chem Toxicol; 1991 Jan; 29(1):1-6. PubMed ID: 1847890 [TBL] [Abstract][Full Text] [Related]
55. The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and its analogues prevent damage to 2-deoxyribose mediated by ferric iron plus ascorbate. Hermes-Lima M; Ponka P; Schulman HM Biochim Biophys Acta; 2000 Oct; 1523(2-3):154-60. PubMed ID: 11042379 [TBL] [Abstract][Full Text] [Related]
56. [Comparison of hydroxyl radical production rates in H2O2 solution under homogeneous catalysis of Fe3+ or Fe2+]. Gao YX; Zhang Y; Yang M; Hu JY Huan Jing Ke Xue; 2006 Feb; 27(2):305-9. PubMed ID: 16686194 [TBL] [Abstract][Full Text] [Related]
57. Iron-reducing and free-radical-scavenging properties of apomorphine and some related benzylisoquinolines. Ubeda A; Montesinos C; Payá M; Alcaraz MJ Free Radic Biol Med; 1993 Aug; 15(2):159-67. PubMed ID: 8397141 [TBL] [Abstract][Full Text] [Related]
58. The Fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical. Wink DA; Nims RW; Saavedra JE; Utermahlen WE; Ford PC Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6604-8. PubMed ID: 8022825 [TBL] [Abstract][Full Text] [Related]
59. Production of Fenton's reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium. Kremer SM; Wood PM Eur J Biochem; 1992 Sep; 208(3):807-14. PubMed ID: 1396686 [TBL] [Abstract][Full Text] [Related]
60. Photochemical production of hydroxyl radical from aqueous iron(III)-hydroxy complex: determination of its reaction rate constants with some substituted benzenes using deoxyribose-thiobartituric acid assay. Joseph JM; Luke TL; Aravind UK; Aravindakumar CT Water Environ Res; 2001; 73(2):243-7. PubMed ID: 11563385 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]