These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21652279)

  • 1. The integrated virtual environment rehabilitation treadmill system.
    Feasel J; Whitton MC; Kassler L; Brooks FP; Lewek MD
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):290-7. PubMed ID: 21652279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time feedback control of split-belt ratio to induce targeted step length asymmetry.
    Carr S; Rasouli F; Kim SH; Reed KB
    J Neuroeng Rehabil; 2022 Jun; 19(1):65. PubMed ID: 35773672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of visual and proprioceptive feedback to improve gait speed and spatiotemporal symmetry following chronic stroke: a case series.
    Lewek MD; Feasel J; Wentz E; Brooks FP; Whitton MC
    Phys Ther; 2012 May; 92(5):748-56. PubMed ID: 22228605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive cueing with Walk-Mate for hemiparetic stroke rehabilitation.
    Muto T; Herzberger B; Hermsdoerfer J; Miyake Y; Poeppel E
    J Neuroeng Rehabil; 2012 Aug; 9():58. PubMed ID: 22909032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Pelvic Corrective Force With Visual Feedback Improves Paretic Leg Muscle Activities and Gait Performance After Stroke.
    Hsu CJ; Kim J; Roth EJ; Rymer WZ; Wu M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2353-2360. PubMed ID: 31675335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of movement errors in modifying spatiotemporal gait asymmetry post stroke: a randomized controlled trial.
    Lewek MD; Braun CH; Wutzke C; Giuliani C
    Clin Rehabil; 2018 Feb; 32(2):161-172. PubMed ID: 28750549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke.
    Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I
    J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial.
    Schück A; Labruyère R; Vallery H; Riener R; Duschau-Wicke A
    J Neuroeng Rehabil; 2012 May; 9():31. PubMed ID: 22650320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke.
    Reisman DS; Wityk R; Silver K; Bastian AJ
    Brain; 2007 Jul; 130(Pt 7):1861-72. PubMed ID: 17405765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotor training intensity after stroke: Effects of interval type and mode.
    Boyne P; Scholl V; Doren S; Carl D; Billinger SA; Reisman DS; Gerson M; Kissela B; Vannest J; Dunning K
    Top Stroke Rehabil; 2020 Oct; 27(7):483-493. PubMed ID: 32063178
    [No Abstract]   [Full Text] [Related]  

  • 13. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton.
    Koopman B; van Asseldonk EH; van der Kooij H
    J Neuroeng Rehabil; 2013 Jan; 10():3. PubMed ID: 23336754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait Training With Visual Feedback and Proprioceptive Input to Reduce Gait Asymmetry in Adults With Cerebral Palsy: A Case Series.
    Levin I; Lewek MD; Feasel J; Thorpe DE
    Pediatr Phys Ther; 2017 Apr; 29(2):138-145. PubMed ID: 28350769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated split-belt treadmill training improves poststroke step length asymmetry.
    Reisman DS; McLean H; Keller J; Danks KA; Bastian AJ
    Neurorehabil Neural Repair; 2013 Jun; 27(5):460-8. PubMed ID: 23392918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Split-Belt Treadmill Interventions on Step Length Asymmetry in Individuals Poststroke: A Systematic Review With Meta-Analysis.
    Dzewaltowski AC; Hedrick EA; Leutzinger TJ; Remski LE; Rosen AB
    Neurorehabil Neural Repair; 2021 Jul; 35(7):563-575. PubMed ID: 33978525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait asymmetry pattern following stroke determines acute response to locomotor task.
    Little VL; Perry LA; Mercado MWV; Kautz SA; Patten C
    Gait Posture; 2020 Mar; 77():300-307. PubMed ID: 32126493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.
    Eikema DJ; Chien JH; Stergiou N; Myers SA; Scott-Pandorf MM; Bloomberg JJ; Mukherjee M
    Exp Brain Res; 2016 Feb; 234(2):511-22. PubMed ID: 26525712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke.
    Mirelman A; Bonato P; Deutsch JE
    Stroke; 2009 Jan; 40(1):169-74. PubMed ID: 18988916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.