These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21652279)

  • 21. Treadmill-Based Locomotor Training With Robotic Pelvic Assist and Visual Feedback: A Feasibility Study.
    Bishop L; Omofuma I; Stein J; Agrawal S; Quinn L
    J Neurol Phys Ther; 2020 Jul; 44(3):205-213. PubMed ID: 32516301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery.
    Sullivan KJ; Knowlton BJ; Dobkin BH
    Arch Phys Med Rehabil; 2002 May; 83(5):683-91. PubMed ID: 11994808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.
    Yoon J; Park HS; Damiano DL
    J Neuroeng Rehabil; 2012 Aug; 9():62. PubMed ID: 22929169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of aerobic treadmill training on gait velocity, cadence, and gait symmetry in chronic hemiparetic stroke: a preliminary report.
    Silver KH; Macko RF; Forrester LW; Goldberg AP; Smith GV
    Neurorehabil Neural Repair; 2000; 14(1):65-71. PubMed ID: 11228951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined user-driven treadmill control and functional electrical stimulation increases walking speeds poststroke.
    Ray NT; Reisman DS; Higginson JS
    J Biomech; 2021 Jul; 124():110480. PubMed ID: 34126560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined Visual Feedback with Pelvic Assistance Force Improves Step Length during treadmill walking in Individuals with Post-Stroke Hemiparesis.
    Hsu CJ; Kim J; Wu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2333-2336. PubMed ID: 30440874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke.
    Deutsch JE; Merians AS; Adamovich S; Poizner H; Burdea GC
    Restor Neurol Neurosci; 2004; 22(3-5):371-86. PubMed ID: 15502277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visually-guided gait training in paretic patients during the first rehabilitation phase: study protocol for a randomized controlled trial.
    Rossano C; Terrier P
    Trials; 2016 Oct; 17(1):523. PubMed ID: 27788679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof.
    Murray SA; Ha KH; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4083-6. PubMed ID: 25570889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid and long-term adaptations in gait symmetry following unilateral step training in people with hemiparesis.
    Kahn JH; Hornby TG
    Phys Ther; 2009 May; 89(5):474-83. PubMed ID: 19282361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of mechanical perturbation gait training on gait and balance function in patients with stroke: A pre-post research study.
    Mizrachi N; Treger I; Melzer I
    J Clin Neurosci; 2020 Aug; 78():301-306. PubMed ID: 32389546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speed and temporal-distance adaptations during treadmill and overground walking following stroke.
    Bayat R; Barbeau H; Lamontagne A
    Neurorehabil Neural Repair; 2005 Jun; 19(2):115-24. PubMed ID: 15883355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke.
    Secoli R; Milot MH; Rosati G; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2011 Apr; 8():21. PubMed ID: 21513561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Split-Belt Walking Paradigm: Exploring Motor Learning and Spatiotemporal Asymmetry Poststroke.
    Helm EE; Reisman DS
    Phys Med Rehabil Clin N Am; 2015 Nov; 26(4):703-13. PubMed ID: 26522907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of motion platform embedded with dual belt treadmill instrumented with two force plates.
    Sinitski EH; Lemaire ED; Baddour N
    J Rehabil Res Dev; 2015; 52(2):221-34. PubMed ID: 26230116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ankle training with a robotic device improves hemiparetic gait after a stroke.
    Forrester LW; Roy A; Krebs HI; Macko RF
    Neurorehabil Neural Repair; 2011 May; 25(4):369-77. PubMed ID: 21115945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke.
    Brouwer B; Parvataneni K; Olney SJ
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):729-34. PubMed ID: 19664866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Spinal Mechanism Related to Left-Right Symmetry Reduces Cutaneous Reflex Modulation Independently of Speed During Split-Belt Locomotion.
    Hurteau MF; Frigon A
    J Neurosci; 2018 Nov; 38(48):10314-10328. PubMed ID: 30315129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Split-belt treadmill training poststroke: a case study.
    Reisman DS; McLean H; Bastian AJ
    J Neurol Phys Ther; 2010 Dec; 34(4):202-7. PubMed ID: 21084921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.