These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 21652312)

  • 61. Systematics of the lizard family pygopodidae with implications for the diversification of Australian temperate biotas.
    Jennings WB; Pianka ER; Donnellan S
    Syst Biol; 2003 Dec; 52(6):757-80. PubMed ID: 14668116
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences.
    Chaw SM; Zharkikh A; Sung HM; Lau TC; Li WH
    Mol Biol Evol; 1997 Jan; 14(1):56-68. PubMed ID: 9000754
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Monocots and eudicots have more conservative flower water use strategies than basal angiosperms.
    Ke Y; Zhang YB; Zhang FP; Yang D; Wang Q; Peng XR; Huang XY; Sher J; Zhang JL
    Plant Biol (Stuttg); 2024 Jun; 26(4):621-632. PubMed ID: 38477557
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Molecular biological research on the origin of the angiosperms].
    Bobrova VK; Goremykin VV; Troitskiĭ AV; Valiego-Roman KM; Antonov AS
    Zh Obshch Biol; 1995; 56(6):645-61. PubMed ID: 8546013
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences.
    Donoghue MJ; Mathews S
    Mol Phylogenet Evol; 1998 Jun; 9(3):489-500. PubMed ID: 9667997
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The emergence of core eudicots: new floral evidence from the earliest Late Cretaceous.
    Friis EM; Pedersen KR; Crane PR
    Proc Biol Sci; 2016 Dec; 283(1845):. PubMed ID: 28003443
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multilocus phylogeny and rapid radiations in Neotropical cichlid fishes (Perciformes: Cichlidae: Cichlinae).
    López-Fernández H; Winemiller KO; Honeycutt RL
    Mol Phylogenet Evol; 2010 Jun; 55(3):1070-86. PubMed ID: 20178851
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.
    Becker A; Kaufmann K; Freialdenhoven A; Vincent C; Li MA; Saedler H; Theissen G
    Mol Genet Genomics; 2002 Feb; 266(6):942-50. PubMed ID: 11862488
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes.
    Qiu YL; Lee J; Bernasconi-Quadroni F; Soltis DE; Soltis PS; Zanis M; Zimmer EA; Chen Z; Savolainen V; Chase MW
    Nature; 1999 Nov; 402(6760):404-7. PubMed ID: 10586879
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms.
    Ma J; Sun P; Wang D; Wang Z; Yang J; Li Y; Mu W; Xu R; Wu Y; Dong C; Shrestha N; Liu J; Yang Y
    Nat Commun; 2021 Nov; 12(1):6929. PubMed ID: 34836967
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae).
    Bartholmes C; Hidalgo O; Gleissberg S
    Plant Biol (Stuttg); 2012 Jan; 14(1):11-23. PubMed ID: 21974722
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Duplication and paralog sorting of RPB2 and RPB1 genes in core eudicots.
    Luo J; Yoshikawa N; Hodson MC; Hall BD
    Mol Phylogenet Evol; 2007 Aug; 44(2):850-62. PubMed ID: 17208015
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The age and diversification of the angiosperms re-revisited.
    Bell CD; Soltis DE; Soltis PS
    Am J Bot; 2010 Aug; 97(8):1296-303. PubMed ID: 21616882
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Amborella genome and the evolution of flowering plants.
    Amborella Genome Project
    Science; 2013 Dec; 342(6165):1241089. PubMed ID: 24357323
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.
    Löhne C; Borsch T
    Mol Biol Evol; 2005 Feb; 22(2):317-32. PubMed ID: 15496557
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots.
    Moore MJ; Soltis PS; Bell CD; Burleigh JG; Soltis DE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4623-8. PubMed ID: 20176954
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms.
    Raman G; Park S
    Front Plant Sci; 2016; 7():341. PubMed ID: 27047519
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant clades in the angiosperm tree of life.
    Wurdack KJ; Davis CC
    Am J Bot; 2009 Aug; 96(8):1551-70. PubMed ID: 21628300
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms).
    Massoni J; Couvreur TL; Sauquet H
    BMC Evol Biol; 2015 Mar; 15():49. PubMed ID: 25887386
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Was the ANITA rooting of the angiosperm phylogeny affected by long-branch attraction? Amborella, Nymphaeales, Illiciales, Trimeniaceae, and Austrobaileya.
    Qiu YL; Lee J; Whitlock BA; Bernasconi-Quadroni F; Dombrovska O
    Mol Biol Evol; 2001 Sep; 18(9):1745-53. PubMed ID: 11504854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.