These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 21652771)

  • 21. Different effects of color-based and location-based selection on visual working memory.
    Li Q; Saiki J
    Atten Percept Psychophys; 2015 Feb; 77(2):450-63. PubMed ID: 25338537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A static color discontinuity can capture spatial attention when the target is an abrupt-onset singleton.
    Burnham BR; Neely JH
    J Exp Psychol Hum Percept Perform; 2008 Aug; 34(4):831-41. PubMed ID: 18665729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large and rapid improvement in form discrimination accuracy following a location precue.
    Lyon DR
    Acta Psychol (Amst); 1990 Feb; 73(1):69-82. PubMed ID: 2316388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exogenous attention differentially modulates the processing of categorical and coordinate spatial relations.
    Okubo M; Laeng B; Saneyoshi A; Michimata C
    Acta Psychol (Amst); 2010 Sep; 135(1):1-11. PubMed ID: 20441992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the generality of the displaywide contingent orienting hypothesis: can a visual onset capture attention without top-down control settings for displaywide onset?
    Yeh SL; Liao HI
    Acta Psychol (Amst); 2010 Oct; 135(2):159-67. PubMed ID: 20638648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Top-down contingencies in peripheral cuing: The roles of color and location.
    Ansorge U; Heumann M
    J Exp Psychol Hum Percept Perform; 2003 Oct; 29(5):937-48. PubMed ID: 14585015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting.
    Zhou X; Chen Q
    Neuropsychologia; 2008 Sep; 46(11):2766-75. PubMed ID: 18597795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attentional effects on sensory tuning for single-feature detection and double-feature conjunction.
    Neri P
    Vision Res; 2004 Dec; 44(26):3053-64. PubMed ID: 15474578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A unified bayesian observer analysis for set size and cueing effects on perceptual decisions and saccades.
    Shimozaki SS; Schoonveld WA; Eckstein MP
    J Vis; 2012 Jun; 12(6):. PubMed ID: 22728676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of target and distractor heterogeneity on search for a color target.
    Nagy AL; Neriani KE; Young TL
    Vision Res; 2005 Jun; 45(14):1885-99. PubMed ID: 15797778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A feature-weighting account of priming in conjunction search.
    Becker SI; Horstmann G
    Atten Percept Psychophys; 2009 Feb; 71(2):258-72. PubMed ID: 19304616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The footprints of visual attention during search with 100% valid and 100% invalid cues.
    Eckstein MP; Pham BT; Shimozaki SS
    Vision Res; 2004 Jun; 44(12):1193-207. PubMed ID: 15066385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of feature- and space-based attention: response modulation and baseline increases.
    McMains SA; Fehd HM; Emmanouil TA; Kastner S
    J Neurophysiol; 2007 Oct; 98(4):2110-21. PubMed ID: 17671104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does previewing one stimulus feature help conjunction search?
    Olds ES; Fockler KA
    Perception; 2004; 33(2):195-216. PubMed ID: 15109162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The contribution of covert attention to the set-size and eccentricity effects in visual search.
    Carrasco M; Yeshurun Y
    J Exp Psychol Hum Percept Perform; 1998 Apr; 24(2):673-92. PubMed ID: 9554103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contingent attentional capture by top-down control settings: converging evidence from event-related potentials.
    Lien MC; Ruthruff E; Goodin Z; Remington RW
    J Exp Psychol Hum Percept Perform; 2008 Jun; 34(3):509-30. PubMed ID: 18505320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attentional modulation of visual-evoked potentials by threat: investigating the effect of evolutionary relevance.
    Brown C; El-Deredy W; Blanchette I
    Brain Cogn; 2010 Dec; 74(3):281-7. PubMed ID: 20888109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of age and exogenous support on visual search performance.
    McLaughlin PM; Murtha SJ
    Exp Aging Res; 2010 Jul; 36(3):325-45. PubMed ID: 20544451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual search for singleton targets redundantly defined in two feature dimensions: Coactive processing of color-motion targets?
    Krummenacher J; Müller HJ
    J Exp Psychol Hum Percept Perform; 2014 Oct; 40(5):1926-39. PubMed ID: 25089576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The time it takes to turn a memory into a template.
    Wilschut A; Theeuwes J; Olivers CN
    J Vis; 2013 Apr; 13(3):. PubMed ID: 23603144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.