BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 21653252)

  • 1. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous identification of multiple driver pathways in cancer.
    Leiserson MD; Blokh D; Sharan R; Raphael BJ
    PLoS Comput Biol; 2013; 9(5):e1003054. PubMed ID: 23717195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated annealing based algorithm for identifying mutated driver pathways in cancer.
    Li HT; Zhang YL; Zheng CH; Wang HQ
    Biomed Res Int; 2014; 2014():375980. PubMed ID: 24982873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for detecting significantly mutated pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    J Comput Biol; 2011 Mar; 18(3):507-22. PubMed ID: 21385051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of mutated subnetworks associated with clinical data in cancer.
    Vandin F; Clay P; Upfal E; Raphael BJ
    Pac Symp Biocomput; 2012; ():55-66. PubMed ID: 22174262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of driver pathways in cancer based on combinatorial patterns of somatic gene mutations.
    Li HT; Zhang J; Xia J; Zheng CH
    Neoplasma; 2016; 63(1):57-63. PubMed ID: 26639234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mutated driver pathways in cancer using a multi-objective optimization model.
    Zheng CH; Yang W; Chong YW; Xia JF
    Comput Biol Med; 2016 May; 72():22-9. PubMed ID: 26995027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
    Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B
    Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding driver pathways in cancer: models and algorithms.
    Vandin F; Upfal E; Raphael BJ
    Algorithms Mol Biol; 2012 Sep; 7(1):23. PubMed ID: 22954134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets.
    Lu S; Lu KN; Cheng SY; Hu B; Ma X; Nystrom N; Lu X
    PLoS Comput Biol; 2015 Aug; 11(8):e1004257. PubMed ID: 26317392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of cancer mutations.
    Liu S; Liu J; Xie Y; Zhai T; Hinderer EW; Stromberg AJ; Vanderford NL; Kolesar JM; Moseley HNB; Chen L; Liu C; Wang C
    Bioinformatics; 2021 Jun; 37(9):1189-1197. PubMed ID: 33165532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.
    Jia P; Zhao Z
    PLoS Comput Biol; 2014 Feb; 10(2):e1003460. PubMed ID: 24516372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Driver Modules with Rarely Mutated Genes in Cancers.
    Li F; Gao L; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):390-401. PubMed ID: 29994261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.