These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 2165365)

  • 21. Regulation of cardiac calcium current by NO and cGMP-modulating agents.
    Gallo MP; Malan D; Bedendi I; Biasin C; Alloatti G; Levi RC
    Pflugers Arch; 2001 Feb; 441(5):621-8. PubMed ID: 11294243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium currents in turtle retinal ganglion cells. II. Dopamine modulation via a cyclic AMP-dependent mechanism.
    Liu Y; Lasater EM
    J Neurophysiol; 1994 Feb; 71(2):743-52. PubMed ID: 8176436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca(2+)-dependent block and potentiation of L-type calcium current in guinea-pig ventricular myocytes.
    Bates SE; Gurney AM
    J Physiol; 1993 Jul; 466():345-65. PubMed ID: 8410697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium entry via L-type calcium channels acts as a negative regulator of adenylyl cyclase activity and cyclic AMP levels in cardiac myocytes.
    Yu HJ; Ma H; Green RD
    Mol Pharmacol; 1993 Oct; 44(4):689-93. PubMed ID: 7694067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase.
    Wahler GM; Dollinger SJ
    Am J Physiol; 1995 Jan; 268(1 Pt 1):C45-54. PubMed ID: 7530909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex regulation of calcium current in cardiac cells. Dependence on a pertussis toxin-sensitive substrate, adenosine triphosphate, and an alpha 1-adrenoceptor.
    Keung EC; Karliner JS
    J Clin Invest; 1990 Mar; 85(3):950-4. PubMed ID: 1968910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Downregulation of cardiac guanosine 5'-triphosphate-binding proteins in right atrium and left ventricle in pacing-induced congestive heart failure.
    Roth DA; Urasawa K; Helmer GA; Hammond HK
    J Clin Invest; 1993 Mar; 91(3):939-49. PubMed ID: 8383705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of PDE inhibitors and carbachol on the L-type Ca current in guinea pig ventricular myocytes.
    Mubagwa K; Shirayama T; Moreau M; Pappano AJ
    Am J Physiol; 1993 Oct; 265(4 Pt 2):H1353-63. PubMed ID: 7694486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compartmentation of cAMP signalling in cardiomyocytes in health and disease.
    Perera RK; Nikolaev VO
    Acta Physiol (Oxf); 2013 Apr; 207(4):650-62. PubMed ID: 23383621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective beta1-adrenoceptor blockade enhances the activity of the stimulatory G-protein in human atrial myocardium.
    Wang T; Plumpton C; Brown MJ
    Br J Pharmacol; 1999 Sep; 128(1):135-41. PubMed ID: 10498844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compartmentalisation of cAMP and Ca(2+) signals.
    Zaccolo M; Magalhães P; Pozzan T
    Curr Opin Cell Biol; 2002 Apr; 14(2):160-6. PubMed ID: 11891114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies.
    Zaccolo M
    Br J Pharmacol; 2009 Sep; 158(1):50-60. PubMed ID: 19371331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mysteries of magnesium homeostasis.
    Murphy E
    Circ Res; 2000 Feb; 86(3):245-8. PubMed ID: 10679471
    [No Abstract]   [Full Text] [Related]  

  • 34. Modification of beta-adrenoceptor signal transduction pathway by genetic manipulation and heart failure.
    Wang X; Dhalla NS
    Mol Cell Biochem; 2000 Nov; 214(1-2):131-55. PubMed ID: 11195784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential regulation of inotropy and lusitropy in overexpressed Gsalpha myocytes through cAMP and Ca2+ channel pathways.
    Kim SJ; Yatani A; Vatner DE; Yamamoto S; Ishikawa Y; Wagner TE; Shannon RP; Kim YK; Takagi G; Asai K; Homcy CJ; Vatner SF
    J Clin Invest; 1999 Apr; 103(7):1089-97. PubMed ID: 10194482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cardiac Gsalpha overexpression enhances L-type calcium channels through an adenylyl cyclase independent pathway.
    Lader AS; Xiao YF; Ishikawa Y; Cui Y; Vatner DE; Vatner SF; Homcy CJ; Cantiello HF
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9669-74. PubMed ID: 9689139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of muscarinic control of the high-threshold calcium current in rabbit sino-atrial node myocytes.
    Petit-Jacques J; Bois P; Bescond J; Lenfant J
    Pflugers Arch; 1993 Apr; 423(1-2):21-7. PubMed ID: 8387668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rate-limiting steps in the beta-adrenergic stimulation of cardiac calcium current.
    Frace AM; Méry PF; Fischmeister R; Hartzell HC
    J Gen Physiol; 1993 Mar; 101(3):337-53. PubMed ID: 8386216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of cardiac L-type Ca2+ channels by GTP gamma S in response to isoprenaline, forskolin and photoreleased nucleotides.
    Kozlowski RZ; Goodstadt LJ; Twist VW; Powell T
    Br J Pharmacol; 1994 Jan; 111(1):250-8. PubMed ID: 8012703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative analysis of the time course of cardiac Ca2+ current response to rapid applications of beta-adrenergic and dihydropyridine agonists.
    Méry PF; Frace AM; Hartzell HC; Fischmeister R
    Naunyn Schmiedebergs Arch Pharmacol; 1993 Aug; 348(2):197-206. PubMed ID: 7694156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.