BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21653696)

  • 1. Retuning Rieske-type oxygenases to expand substrate range.
    Mohammadi M; Viger JF; Kumar P; Barriault D; Bolin JT; Sylvestre M
    J Biol Chem; 2011 Aug; 286(31):27612-21. PubMed ID: 21653696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into the expanded PCB-degrading abilities of a biphenyl dioxygenase obtained by directed evolution.
    Kumar P; Mohammadi M; Viger JF; Barriault D; Gomez-Gil L; Eltis LD; Bolin JT; Sylvestre M
    J Mol Biol; 2011 Jan; 405(2):531-47. PubMed ID: 21073881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase.
    Kumar P; Mohammadi M; Dhindwal S; Pham TT; Bolin JT; Sylvestre M
    Biochem Biophys Res Commun; 2012 May; 421(4):757-62. PubMed ID: 22546558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran.
    Viger JF; Mohammadi M; Barriault D; Sylvestre M
    Biochem Biophys Res Commun; 2012 Mar; 419(2):362-7. PubMed ID: 22342725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the metabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by biphenyl dioxygenases.
    L'Abbée JB; Tu Y; Barriault D; Sylvestre M
    Arch Biochem Biophys; 2011 Dec; 516(1):35-44. PubMed ID: 22001737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit.
    Vézina J; Barriault D; Sylvestre M
    J Mol Microbiol Biotechnol; 2008; 15(2-3):139-51. PubMed ID: 18685267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable ability of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids.
    Pham TT; Tu Y; Sylvestre M
    Appl Environ Microbiol; 2012 May; 78(10):3560-70. PubMed ID: 22427498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Burkholderia xenovorans LB400 BphA through Site-Directed Mutagenesis at Position 283.
    Li J; Min J; Wang Y; Chen W; Kong Y; Guo T; Mahto JK; Sylvestre M; Hu X
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32709719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the biphenyl dioxygenase BphA from Burkholderia xenovorans LB400 by random mutagenesis of multiple sites in region III.
    Barriault D; Sylvestre M
    J Biol Chem; 2004 Nov; 279(46):47480-8. PubMed ID: 15342624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme.
    Gómez-Gil L; Kumar P; Barriault D; Bolin JT; Sylvestre M; Eltis LD
    J Bacteriol; 2007 Aug; 189(15):5705-15. PubMed ID: 17526697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants.
    Mohammadi M; Chalavi V; Novakova-Sura M; Laliberté JF; Sylvestre M
    Biotechnol Bioeng; 2007 Jun; 97(3):496-505. PubMed ID: 17006888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the regiospecificity of Burkholderia xenovorans LB400 biphenyl dioxygenase toward 2,2'-dichlorobiphenyl and 2,3,2',3'-tetrachlorobiphenyl.
    Barriault D; Lépine F; Mohammadi M; Milot S; Leberre N; Sylvestre M
    J Biol Chem; 2004 Nov; 279(46):47489-96. PubMed ID: 15342625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active-site engineering of biphenyl dioxygenase: effect of substituted amino acids on substrate specificity and regiospecificity.
    Suenaga H; Goto M; Furukawa K
    Appl Microbiol Biotechnol; 2006 Jun; 71(2):168-76. PubMed ID: 16217654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving the profile of metabolites generated during oxidation of dibenzofuran and chlorodibenzofurans by the biphenyl catabolic pathway enzymes.
    Mohammadi M; Sylvestre M
    Chem Biol; 2005 Jul; 12(7):835-46. PubMed ID: 16039530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design principles for site-selective hydroxylation by a Rieske oxygenase.
    Liu J; Tian J; Perry C; Lukowski AL; Doukov TI; Narayan ARH; Bridwell-Rabb J
    Nat Commun; 2022 Jan; 13(1):255. PubMed ID: 35017498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pinpointing biphenyl dioxygenase residues that are crucial for substrate interaction.
    Zielinski M; Kahl S; Hecht HJ; Hofer B
    J Bacteriol; 2003 Dec; 185(23):6976-80. PubMed ID: 14617661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis of the Enhanced Pollutant-Degrading Capabilities of an Engineered Biphenyl Dioxygenase.
    Dhindwal S; Gomez-Gil L; Neau DB; Pham TT; Sylvestre M; Eltis LD; Bolin JT; Kumar P
    J Bacteriol; 2016 May; 198(10):1499-512. PubMed ID: 26953337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for divergent C-H hydroxylation selectivity in two Rieske oxygenases.
    Lukowski AL; Liu J; Bridwell-Rabb J; Narayan ARH
    Nat Commun; 2020 Jun; 11(1):2991. PubMed ID: 32532989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The principal determinants for the structure of the substrate-binding pocket are located within a central core of a biphenyl dioxygenase alpha subunit.
    Zielinski M; Backhaus S; Hofer B
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2439-2448. PubMed ID: 12177337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.