BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 21654028)

  • 1. Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates.
    Han N; Wang F; Hui AT; Hou JJ; Shan G; Xiu F; Hung T; Ho JC
    Nanotechnology; 2011 Jul; 22(28):285607. PubMed ID: 21654028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications.
    Yang ZX; Wang F; Han N; Lin H; Cheung HY; Fang M; Yip S; Hung T; Wong CY; Ho JC
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10946-52. PubMed ID: 24107082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.
    Yang ZX; Liu L; Yip S; Li D; Shen L; Zhou Z; Han N; Hung TF; Pun EY; Wu X; Song A; Ho JC
    ACS Nano; 2017 Apr; 11(4):4237-4246. PubMed ID: 28355076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel-aligned GaAs nanowires with 110 orientation laterally grown on [311]B substrates via the gold-catalyzed vapor-liquid-solid mode.
    Zhang G; Tateno K; Gotoh H; Nakano H
    Nanotechnology; 2010 Mar; 21(9):095607. PubMed ID: 20139489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen.
    Han N; Yang Z; Wang F; Yip S; Dong G; Liang X; Hung T; Chen Y; Ho JC
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5591-7. PubMed ID: 25700210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates.
    Sun MH; Leong ES; Chin AH; Ning CZ; Cirlin GE; Samsonenko YB; Dubrovskii VG; Chuang L; Chang-Hasnain C
    Nanotechnology; 2010 Aug; 21(33):335705. PubMed ID: 20657047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors.
    Chen SY; Wang CY; Ford AC; Chou JC; Wang YC; Wang FY; Ho JC; Wang HC; Javey A; Gan JY; Chen LJ; Chueh YL
    Phys Chem Chem Phys; 2013 Feb; 15(8):2654-9. PubMed ID: 23340577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method.
    Wang Y; Yang Z; Wu X; Han N; Liu H; Wang S; Li J; Tse W; Yip S; Chen Y; Ho JC
    Nanoscale Res Lett; 2016 Dec; 11(1):191. PubMed ID: 27071678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale and uniform preparation of pure-phase wurtzite GaAs NWs on non-crystalline substrates.
    Han N; Hou JJ; Wang F; Yip S; Lin H; Fang M; Xiu F; Shi X; Hung T; Ho JC
    Nanoscale Res Lett; 2012 Nov; 7(1):632. PubMed ID: 23171521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MOCVD Growth of High-Quality and Density-Tunable GaAs Nanowires on ITO Catalyzed by Au Nanoparticles Deposited by Centrifugation.
    Wu D; Tang X; Yoon HS; Wang K; Olivier A; Li X
    Nanoscale Res Lett; 2015 Dec; 10(1):410. PubMed ID: 26487507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties.
    Han N; Hou JJ; Wang F; Yip S; Yen YT; Yang ZX; Dong G; Hung T; Chueh YL; Ho JC
    ACS Nano; 2013 Oct; 7(10):9138-46. PubMed ID: 24016352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of amorphous silica nanowire growth by oxygen content of Si-rich oxide.
    Shin DH; Kim S; Hong SH; Choi SH; Kim KJ
    Nanotechnology; 2010 Jan; 21(4):045604. PubMed ID: 20009177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices.
    Hou JJ; Han N; Wang F; Xiu F; Yip S; Hui AT; Hung T; Ho JC
    ACS Nano; 2012 Apr; 6(4):3624-30. PubMed ID: 22443352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires.
    Dong A; Tang R; Buhro WE
    J Am Chem Soc; 2007 Oct; 129(40):12254-62. PubMed ID: 17880075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guiding vapor-liquid-solid nanowire growth using SiO2.
    Quitoriano NJ; Wu W; Kamins TI
    Nanotechnology; 2009 Apr; 20(14):145303. PubMed ID: 19420522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
    Han N; Yang ZX; Wang F; Dong G; Yip S; Liang X; Hung TF; Chen Y; Ho JC
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20454-9. PubMed ID: 26284305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three synthetic routes to single-crystalline PbS nanowires with controlled growth direction and their electrical transport properties.
    Jang SY; Song YM; Kim HS; Cho YJ; Seo YS; Jung GB; Lee CW; Park J; Jung M; Kim J; Kim B; Kim JG; Kim YJ
    ACS Nano; 2010 Apr; 4(4):2391-401. PubMed ID: 20349941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.
    Dheeraj DL; Munshi AM; Scheffler M; van Helvoort AT; Weman H; Fimland BO
    Nanotechnology; 2013 Jan; 24(1):015601. PubMed ID: 23220972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth direction modulation and diameter-dependent mobility in InN nanowires.
    Koley G; Cai Z; Quddus EB; Liu J; Qazi M; Webb RA
    Nanotechnology; 2011 Jul; 22(29):295701. PubMed ID: 21673377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.