These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21654447)

  • 1. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease.
    Haumont T; Rahman T; Sample W; M King M; Church C; Henley J; Jayakumar S
    J Pediatr Orthop; 2011; 31(5):e44-9. PubMed ID: 21654447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and testing of a functional arm orthosis in patients with neuromuscular diseases.
    Rahman T; Sample W; Seliktar R; Scavina MT; Clark AL; Moran K; Alexander MA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):244-51. PubMed ID: 17601194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis.
    Housman SJ; Scott KM; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive exoskeletons for assisting limb movement.
    Rahman T; Sample W; Jayakumar S; King MM; Wee JY; Seliktar R; Alexander M; Scavina M; Clark A
    J Rehabil Res Dev; 2006; 43(5):583-90. PubMed ID: 17123200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative measures with WREX usage.
    Shank TM; Wee J; Ty J; Rahman T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1375-1380. PubMed ID: 28814012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a gravity-compensating orthosis on reaching after stroke: evaluation of the Therapy Assistant WREX.
    Iwamuro BT; Cruz EG; Connelly LL; Fischer HC; Kamper DG
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2121-8. PubMed ID: 18996241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. User Evaluation of a Dynamic Arm Orthosis for People With Neuromuscular Disorders.
    Gunn M; Shank TM; Eppes M; Hossain J; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1277-1283. PubMed ID: 28055882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal muscular atrophy: survival pattern and functional status.
    Chung BH; Wong VC; Ip P
    Pediatrics; 2004 Nov; 114(5):e548-53. PubMed ID: 15492357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression.
    Rocon E; Belda-Lois JM; Ruiz AF; Manto M; Moreno JC; Pons JL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):367-78. PubMed ID: 17894269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A body-powered functional upper limb orthosis.
    Rahman T; Sample W; Seliktar R; Alexander M; Scavina M
    J Rehabil Res Dev; 2000; 37(6):675-80. PubMed ID: 11321003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the Wilmington Robotic Exoskeleton to Improve Upper Extremity Function in Patients With Duchenne Muscular Dystrophy.
    Estilow T; Glanzman AM; Powers K; Moll A; Flickinger J; Medne L; Tennekoon G; Yum SW
    Am J Occup Ther; 2018; 72(2):7202345010p1-7202345010p5. PubMed ID: 29426391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Robotic assisted treadmill therapy in children with cerebral palsy].
    Borggräfe I; Meyer-Heim A; Heinen F
    MMW Fortschr Med; 2009 Oct; 151 Suppl 3():123-6. PubMed ID: 20623939
    [No Abstract]   [Full Text] [Related]  

  • 14. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility and Effectiveness of a Novel Exoskeleton for an Infant With Arm Movement Impairments.
    Babik I; Kokkoni E; Cunha AB; Galloway JC; Rahman T; Lobo MA
    Pediatr Phys Ther; 2016; 28(3):338-46. PubMed ID: 27341584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time myoprocessors for a neural controlled powered exoskeleton arm.
    Cavallaro EE; Rosen J; Perry JC; Burns S
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utility of knee releases in arthrogryposis.
    Ho CA; Karol LA
    J Pediatr Orthop; 2008; 28(3):307-13. PubMed ID: 18362795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term survival in a child with arthrogryposis multiplex congenita and spinal muscular atrophy.
    Falsaperla R; Romeo G; Di Giorgio A; Pavone P; Parano E; Connolly AM
    J Child Neurol; 2001 Dec; 16(12):934-6. PubMed ID: 11785510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying anti-gravity torques for the design of a powered exoskeleton.
    Ragonesi D; Agrawal SK; Sample W; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):283-8. PubMed ID: 23096118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.