These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 216545)
1. Preferential charging of tRNA-Met-f in Escherichia coli K12. Ron EZ; Falk A; Helberg D; Horowitz S; Zeevi M Eur J Biochem; 1978 Dec; 92(2):389-95. PubMed ID: 216545 [TBL] [Abstract][Full Text] [Related]
2. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli. Varshney U; RajBhandary UL J Bacteriol; 1992 Dec; 174(23):7819-26. PubMed ID: 1447148 [TBL] [Abstract][Full Text] [Related]
3. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli. Jacques Y; Blanquet S Eur J Biochem; 1977 Oct; 79(2):433-41. PubMed ID: 336359 [TBL] [Abstract][Full Text] [Related]
4. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase. Old JM; Jones DS Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037 [TBL] [Abstract][Full Text] [Related]
5. Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli. Fayat G; Fromant M; Blanquet S Biochemistry; 1977 May; 16(11):2570-9. PubMed ID: 193563 [No Abstract] [Full Text] [Related]
6. Lysine 335, part of the KMSKS signature sequence, plays a crucial role in the amino acid activation catalysed by the methionyl-tRNA synthetase from Escherichia coli. Mechulam Y; Dardel F; Le Corre D; Blanquet S; Fayat G J Mol Biol; 1991 Feb; 217(3):465-75. PubMed ID: 1847216 [TBL] [Abstract][Full Text] [Related]
7. Energy cost of proofreading in vivo: the charging of methionine tRNAs in Escherichia coli. Jakubowski H FASEB J; 1993 Jan; 7(1):168-72. PubMed ID: 8422964 [TBL] [Abstract][Full Text] [Related]
8. Methionyl-tRNA synthetase needs an intact and mobile 332KMSKS336 motif in catalysis of methionyl adenylate formation. Schmitt E; Meinnel T; Blanquet S; Mechulam Y J Mol Biol; 1994 Sep; 242(4):566-76. PubMed ID: 7932711 [TBL] [Abstract][Full Text] [Related]
9. Ability of formyl-methionyl-tRNA to initiate globin synthesis in the presence of double-stranded RNA or in the absence of hemin. Cahn F; Lubin M Mol Biol Rep; 1975 Mar; 2(1):49-57. PubMed ID: 1093002 [No Abstract] [Full Text] [Related]
10. Alteration of the kinetic parameters for aminoacylation of Escherichia coli formylmethionine transfer RNA by modification of an anticodon base. Schulman LH; Pelka H J Biol Chem; 1977 Feb; 252(3):814-9. PubMed ID: 14133 [TBL] [Abstract][Full Text] [Related]
12. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R: partial purification and properties of methionyl-transfer ribonucleic acid synthetase and methionyl-transfer ribonucleic acid formyltransferase. Samuel CE; Rabinowitz JC J Bacteriol; 1974 Apr; 118(1):21-31. PubMed ID: 4206871 [TBL] [Abstract][Full Text] [Related]
13. Proofreading and the evolution of a methyl donor function. Cyclization of methionine to S-methyl homocysteine thiolactone by Escherichia coli methionyl-tRNA synthetase. Jakubowski H J Biol Chem; 1993 Mar; 268(9):6549-53. PubMed ID: 8454625 [TBL] [Abstract][Full Text] [Related]
14. Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine tRNA. Kim HY; Pelka H; Brunie S; Schulman LH Biochemistry; 1993 Oct; 32(39):10506-11. PubMed ID: 8399196 [TBL] [Abstract][Full Text] [Related]
15. Global tRNA misacylation induced by anaerobiosis and antibiotic exposure broadly increases stress resistance in Escherichia coli. Schwartz MH; Waldbauer JR; Zhang L; Pan T Nucleic Acids Res; 2016 Dec; 44(21):10292-10303. PubMed ID: 27672035 [TBL] [Abstract][Full Text] [Related]
16. Energy cost of translational proofreading in vivo. The aminoacylation of transfer RNA in Escherichia coli. Jakubowski H Ann N Y Acad Sci; 1994 Nov; 745():4-20. PubMed ID: 7530434 [TBL] [Abstract][Full Text] [Related]
17. Role of the beta-phosphate-gamma-phosphate interchange reaction of adenosine triphosphate in amino acid discrimination by valyl- and methionyl-tRNA synthetases from Escherichia coli. Smith LT; Cohn M Biochemistry; 1981 Jan; 20(2):385-91. PubMed ID: 6258639 [No Abstract] [Full Text] [Related]
18. Regulation of methionyl-transfer ribonucleic acid synthetase formation in Escherichia coli and Salmonella typhimurium. Archibold ER; Williams LS J Bacteriol; 1973 Jun; 114(3):1007-13. PubMed ID: 4576394 [TBL] [Abstract][Full Text] [Related]
19. A new method for the isolation of methionyl transfer RNA synthetase mutants from Escherichia coli. Armstrong JB; Fairfield JA Can J Microbiol; 1975 Jun; 21(6):754-8. PubMed ID: 1097064 [TBL] [Abstract][Full Text] [Related]
20. Methionyl-tRNA synthetase from Escherichia coli: active stoichiometry and stopped-flow analysis of methionyl adenylate formaiton. Hyafil F; Jacques Y; Fayat G; Fromant M; Dessen P; Blanquet S Biochemistry; 1976 Aug; 15(17):3678-85. PubMed ID: 182214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]