BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 216545)

  • 1. Preferential charging of tRNA-Met-f in Escherichia coli K12.
    Ron EZ; Falk A; Helberg D; Horowitz S; Zeevi M
    Eur J Biochem; 1978 Dec; 92(2):389-95. PubMed ID: 216545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
    Varshney U; RajBhandary UL
    J Bacteriol; 1992 Dec; 174(23):7819-26. PubMed ID: 1447148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli.
    Jacques Y; Blanquet S
    Eur J Biochem; 1977 Oct; 79(2):433-41. PubMed ID: 336359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM; Jones DS
    Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli.
    Fayat G; Fromant M; Blanquet S
    Biochemistry; 1977 May; 16(11):2570-9. PubMed ID: 193563
    [No Abstract]   [Full Text] [Related]  

  • 6. Lysine 335, part of the KMSKS signature sequence, plays a crucial role in the amino acid activation catalysed by the methionyl-tRNA synthetase from Escherichia coli.
    Mechulam Y; Dardel F; Le Corre D; Blanquet S; Fayat G
    J Mol Biol; 1991 Feb; 217(3):465-75. PubMed ID: 1847216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy cost of proofreading in vivo: the charging of methionine tRNAs in Escherichia coli.
    Jakubowski H
    FASEB J; 1993 Jan; 7(1):168-72. PubMed ID: 8422964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionyl-tRNA synthetase needs an intact and mobile 332KMSKS336 motif in catalysis of methionyl adenylate formation.
    Schmitt E; Meinnel T; Blanquet S; Mechulam Y
    J Mol Biol; 1994 Sep; 242(4):566-76. PubMed ID: 7932711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ability of formyl-methionyl-tRNA to initiate globin synthesis in the presence of double-stranded RNA or in the absence of hemin.
    Cahn F; Lubin M
    Mol Biol Rep; 1975 Mar; 2(1):49-57. PubMed ID: 1093002
    [No Abstract]   [Full Text] [Related]  

  • 10. Alteration of the kinetic parameters for aminoacylation of Escherichia coli formylmethionine transfer RNA by modification of an anticodon base.
    Schulman LH; Pelka H
    J Biol Chem; 1977 Feb; 252(3):814-9. PubMed ID: 14133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analogs of methionyl-tRNA synthetase substrates containing photolabile groups.
    Wetzel R; Söll D
    Nucleic Acids Res; 1977; 4(5):1681-94. PubMed ID: 331263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R: partial purification and properties of methionyl-transfer ribonucleic acid synthetase and methionyl-transfer ribonucleic acid formyltransferase.
    Samuel CE; Rabinowitz JC
    J Bacteriol; 1974 Apr; 118(1):21-31. PubMed ID: 4206871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proofreading and the evolution of a methyl donor function. Cyclization of methionine to S-methyl homocysteine thiolactone by Escherichia coli methionyl-tRNA synthetase.
    Jakubowski H
    J Biol Chem; 1993 Mar; 268(9):6549-53. PubMed ID: 8454625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine tRNA.
    Kim HY; Pelka H; Brunie S; Schulman LH
    Biochemistry; 1993 Oct; 32(39):10506-11. PubMed ID: 8399196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global tRNA misacylation induced by anaerobiosis and antibiotic exposure broadly increases stress resistance in Escherichia coli.
    Schwartz MH; Waldbauer JR; Zhang L; Pan T
    Nucleic Acids Res; 2016 Dec; 44(21):10292-10303. PubMed ID: 27672035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy cost of translational proofreading in vivo. The aminoacylation of transfer RNA in Escherichia coli.
    Jakubowski H
    Ann N Y Acad Sci; 1994 Nov; 745():4-20. PubMed ID: 7530434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the beta-phosphate-gamma-phosphate interchange reaction of adenosine triphosphate in amino acid discrimination by valyl- and methionyl-tRNA synthetases from Escherichia coli.
    Smith LT; Cohn M
    Biochemistry; 1981 Jan; 20(2):385-91. PubMed ID: 6258639
    [No Abstract]   [Full Text] [Related]  

  • 18. Regulation of methionyl-transfer ribonucleic acid synthetase formation in Escherichia coli and Salmonella typhimurium.
    Archibold ER; Williams LS
    J Bacteriol; 1973 Jun; 114(3):1007-13. PubMed ID: 4576394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method for the isolation of methionyl transfer RNA synthetase mutants from Escherichia coli.
    Armstrong JB; Fairfield JA
    Can J Microbiol; 1975 Jun; 21(6):754-8. PubMed ID: 1097064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methionyl-tRNA synthetase from Escherichia coli: active stoichiometry and stopped-flow analysis of methionyl adenylate formaiton.
    Hyafil F; Jacques Y; Fayat G; Fromant M; Dessen P; Blanquet S
    Biochemistry; 1976 Aug; 15(17):3678-85. PubMed ID: 182214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.