These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 216545)

  • 41. Characterization of the human mitochondrial methionyl-tRNA synthetase.
    Spencer AC; Heck A; Takeuchi N; Watanabe K; Spremulli LL
    Biochemistry; 2004 Aug; 43(30):9743-54. PubMed ID: 15274629
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Yeast mitochondrial methionine initiator tRNA: characterization and nucleotide sequence.
    Canaday J; Dirheimer G; Martin RP
    Nucleic Acids Res; 1980 Apr; 8(7):1445-57. PubMed ID: 6448989
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transition state stabilization by the 'high' motif of class I aminoacyl-tRNA synthetases: the case of Escherichia coli methionyl-tRNA synthetase.
    Schmitt E; Panvert M; Blanquet S; Mechulam Y
    Nucleic Acids Res; 1995 Dec; 23(23):4793-8. PubMed ID: 8532520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methionyl-tRNA synthetase from Escherichia coli: substituting magnesium by manganese in the L-methionine activating reaction.
    Hyafil F; Blanquet S
    Eur J Biochem; 1977 Apr; 74(3):481-93. PubMed ID: 323013
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactions of thio analogues of adenosine 5'-triphosphate catalyzed by methionyl-tRNA synthetase from Escherichia coli and metal dependence of stereospecificity.
    Smith LT; Cohn M
    Biochemistry; 1982 Mar; 21(7):1530-4. PubMed ID: 7044416
    [No Abstract]   [Full Text] [Related]  

  • 46. Structural requirements for aminoacylation of Escherichia coli formylmethionine transfer RNA.
    Schulman LH; Pelka H
    Biochemistry; 1977 Sep; 16(19):4256-65. PubMed ID: 332227
    [No Abstract]   [Full Text] [Related]  

  • 47. Evidence for breaking domain-domain functional communication in a synthetase-tRNA complex.
    Alexander RW; Schimmel P
    Biochemistry; 1999 Dec; 38(49):16359-65. PubMed ID: 10587461
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of L-methioninyl adenylate on the level of aminoacylation in vivo of tRNA(Met) from Escherichia coli K12.
    Cassio D; Mathien Y
    Nucleic Acids Res; 1974 May; 1(5):719-25. PubMed ID: 10793752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isolation of a factor that stimulates cleavage of ribosomal bound N-acetyl or N-formyl methionyl tRNA-Met.
    Ganoza MC; Barraclough N
    FEBS Lett; 1975 May; 53(2):159-63. PubMed ID: 1095411
    [No Abstract]   [Full Text] [Related]  

  • 50. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases.
    Hountondji C; Schmitter JM; Fukui T; Tagaya M; Blanquet S
    Biochemistry; 1990 Dec; 29(51):11266-73. PubMed ID: 2271710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aminoacylation of Phaseolus vulgaris cytoplasmic, chloroplastic and mitochondrial tRNAsMet and of Escherichia coli tRNAsMet by homologous and heterologous enzymes.
    Gillemaut P; Weil JH
    Biochim Biophys Acta; 1975 Oct; 407(2):240-8. PubMed ID: 1101967
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy.
    Sørensen MA
    J Mol Biol; 2001 Mar; 307(3):785-98. PubMed ID: 11273701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Initiation of protein synthesis without formylation in a mutant of Escherichia coli that grows in the absence of tetrahydrofolate.
    Baumstark BR; Spremulli LL; RajBhandary UL; Brown GM
    J Bacteriol; 1977 Jan; 129(1):457-71. PubMed ID: 318648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli.
    Jakubowski H
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4504-8. PubMed ID: 2191291
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2.
    Cherest H; Surdin-Kerjan Y; Robichon-Szulmajster H
    J Bacteriol; 1971 Jun; 106(3):758-72. PubMed ID: 5557593
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A promiscuous aminoacyl-tRNA synthetase that incorporates cysteine, methionine, and alanine homologs into proteins.
    Brustad E; Bushey ML; Brock A; Chittuluru J; Schultz PG
    Bioorg Med Chem Lett; 2008 Nov; 18(22):6004-6. PubMed ID: 18845434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Affinity chromatography on agarose-hexyl-adenosine-5'-phosphate of methionyl-tRNA synthetase from Escherichia coli. Application of the couplings between the methionine and ATP sites.
    Fayat G; Fromant M; Kahn D; Blanquet S
    Eur J Biochem; 1977 Sep; 78(2):333-6. PubMed ID: 334536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Inhibition by adenosine and 8-aminoadenosine of the amino-acid activation reaction.
    Blanquet S; Fayat G; Poiret M; Waller JP
    Eur J Biochem; 1975 Feb; 51(2):567-71. PubMed ID: 168070
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase.
    Fourmy D; Meinnel T; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Jun; 231(4):1068-77. PubMed ID: 8515465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.