BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21655093)

  • 1. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus.
    Yadav V; Panilaitis B; Shi H; Numuta K; Lee K; Kaplan DL
    PLoS One; 2011; 6(6):e18099. PubMed ID: 21655093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional determination of homologs of the
    Ahangar MS; Furze CM; Guy CS; Cooper C; Maskew KS; Graham B; Cameron AD; Fullam E
    J Biol Chem; 2018 Jun; 293(25):9770-9783. PubMed ID: 29728457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers.
    Lee JW; Deng F; Yeomans WG; Allen AL; Gross RA; Kaplan DL
    Appl Environ Microbiol; 2001 Sep; 67(9):3970-5. PubMed ID: 11525993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of Poly-β1,4-
    Keffeler EC; Parthasarathy S; Abdullahi ZH; Hancock LE
    J Bacteriol; 2021 Oct; 203(21):e0037121. PubMed ID: 34424034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetamido sugar biosynthesis in the Euryarchaea.
    Namboori SC; Graham DE
    J Bacteriol; 2008 Apr; 190(8):2987-96. PubMed ID: 18263721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-acetylglucosamine-6-phosphate deacetylase (NagA) of Listeria monocytogenes EGD, an essential enzyme for the metabolism and recycling of amino sugars.
    Popowska M; Osińska M; Rzeczkowska M
    Arch Microbiol; 2012 Apr; 194(4):255-68. PubMed ID: 21947170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli.
    Peri KG; Goldie H; Waygood EB
    Biochem Cell Biol; 1990 Jan; 68(1):123-37. PubMed ID: 2190615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates.
    Alvarez-Añorve LI; Calcagno ML; Plumbridge J
    J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic analysis of the roles of agaA, agaI, and agaS genes in the N-acetyl-D-galactosamine and D-galactosamine catabolic pathways in Escherichia coli strains O157:H7 and C.
    Hu Z; Patel IR; Mukherjee A
    BMC Microbiol; 2013 May; 13():94. PubMed ID: 23634833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans.
    Moye ZD; Burne RA; Zeng L
    Appl Environ Microbiol; 2014 Aug; 80(16):5053-67. PubMed ID: 24928869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient chemoenzymatic synthesis of uridine 5'-diphosphate N-acetylglucosamine and uridine 5'-diphosphate N-trifluoacetyl glucosamine with three recombinant enzymes.
    Li X; Qi C; Wei P; Huang L; Cai J; Xu Z
    Prep Biochem Biotechnol; 2017 Oct; 47(9):852-859. PubMed ID: 27220687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification, cloning and sequencing the aceA gene involved in acetan biosynthesis in Acetobacter xylinum.
    Griffin AM; Morris VJ; Gasson MJ
    FEMS Microbiol Lett; 1996 Mar; 137(1):115-21. PubMed ID: 8935665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus.
    Eisenbeis S; Lohmiller S; Valdebenito M; Leicht S; Braun V
    J Bacteriol; 2008 Aug; 190(15):5230-8. PubMed ID: 18539735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes.
    Wendland J; Schaub Y; Walther A
    Appl Environ Microbiol; 2009 Sep; 75(18):5840-5. PubMed ID: 19648376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel N-acetylglucosamine-6-phosphate deacetylase that is essential for chitin utilization in the chitinolytic bacterium, Chitiniphilus shinanonensis.
    Ichioka R; Kitazawa Y; Taguchi G; Shimosaka M
    J Appl Microbiol; 2024 May; 135(5):. PubMed ID: 38724455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of a novel polysaccharide by Acetobacter xylinum.
    Shirai A; Takahashi M; Kaneko H; Nishimura S; Ogawa M; Nishi N; Tokura S
    Int J Biol Macromol; 1994 Dec; 16(6):297-300. PubMed ID: 7727342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LmbE proteins from Bacillus cereus are de-N-acetylases with broad substrate specificity and are highly similar to proteins in Bacillus anthracis.
    Deli A; Koutsioulis D; Fadouloglou VE; Spiliotopoulou P; Balomenou S; Arnaouteli S; Tzanodaskalaki M; Mavromatis K; Kokkinidis M; Bouriotis V
    FEBS J; 2010 Jul; 277(13):2740-53. PubMed ID: 20491912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient method for production of uridine 5'-diphospho-N-acetylglucosamine.
    Okuyama K; Hamamoto T; Ishige K; Takenouchi K; Noguchi T
    Biosci Biotechnol Biochem; 2000 Feb; 64(2):386-92. PubMed ID: 10737197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine.
    Liu Y; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    Metab Eng; 2013 Sep; 19():107-15. PubMed ID: 23876412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis.
    Bertram R; Rigali S; Wood N; Lulko AT; Kuipers OP; Titgemeyer F
    J Bacteriol; 2011 Jul; 193(14):3525-36. PubMed ID: 21602348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.