BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21655741)

  • 1. Genomic instability in human actinic keratosis and squamous cell carcinoma.
    Cabral LS; Festa Neto C; Sanches JA; Ruiz IR
    Clinics (Sao Paulo); 2011; 66(4):523-8. PubMed ID: 21655741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential allele loss on chromosome 9q22.3 in human non-melanoma skin cancer.
    Holmberg E; Rozell BL; Toftgård R
    Br J Cancer; 1996 Jul; 74(2):246-50. PubMed ID: 8688329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin.
    Ra SH; Li X; Binder S
    Mod Pathol; 2011 Jul; 24(7):963-73. PubMed ID: 21743436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progression of actinic keratosis to squamous cell carcinoma of the skin correlates with deletion of the 9p21 region encoding the p16(INK4a) tumor suppressor.
    Mortier L; Marchetti P; Delaporte E; Martin de Lassalle E; Thomas P; Piette F; Formstecher P; Polakowska R; Danzé PM
    Cancer Lett; 2002 Feb; 176(2):205-14. PubMed ID: 11804749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetitive DNA alterations in human skin cancers.
    Ribeiro GR; Francisco G; Teixeira LV; Romão-Correia RF; Sanches JA; Neto CF; Ruiz IR
    J Dermatol Sci; 2004 Nov; 36(2):79-86. PubMed ID: 15519137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of actinic keratosis into invasive squamous cell carcinoma: evidence and evolving classification schemes.
    Anwar J; Wrone DA; Kimyai-Asadi A; Alam M
    Clin Dermatol; 2004; 22(3):189-96. PubMed ID: 15262304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of heterozygosity in actinic keratosis, squamous cell carcinoma and sun-exposed normal-appearing skin in Japanese: difference between Japanese and Caucasians.
    Kushida Y; Miki H; Ohmori M
    Cancer Lett; 1999 Jun; 140(1-2):169-75. PubMed ID: 10403556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsatellite alterations in phenotypically normal esophageal squamous epithelium and metaplasia-dysplasia-adenocarcinoma sequence.
    Cai JC; Liu D; Liu KH; Zhang HP; Zhong S; Xia NS
    World J Gastroenterol; 2008 Jul; 14(25):4070-6. PubMed ID: 18609693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas.
    Spencer JM; Kahn SM; Jiang W; DeLeo VA; Weinstein IB
    Arch Dermatol; 1995 Jul; 131(7):796-800. PubMed ID: 7611795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neoantigen Fitness Model Predicts Lower Immune Recognition of Cutaneous Squamous Cell Carcinomas Than Actinic Keratoses.
    Borden ES; Kang P; Natri HM; Phung TN; Wilson MA; Buetow KH; Hastings KT
    Front Immunol; 2019; 10():2799. PubMed ID: 31849976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of allelic imbalances on chromosome 3p in nasopharyngeal carcinoma in Tunisia: high frequency of microsatellite instability in patients with early-onset of the disease.
    Trimeche M; Braham H; Ziadi S; Amara K; Hachana M; Korbi S
    Oral Oncol; 2008 Aug; 44(8):775-83. PubMed ID: 18206419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actinic keratosis: facts and controversies.
    Ko CJ
    Clin Dermatol; 2010; 28(3):249-53. PubMed ID: 20541675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clarifying Progress on the Genomic Landscape of Actinic Keratosis.
    Hedberg M; Seykora JT
    J Invest Dermatol; 2021 Jul; 141(7):1622-1624. PubMed ID: 34167719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients.
    Hameetman L; Commandeur S; Bavinck JN; Wisgerhof HC; de Gruijl FR; Willemze R; Mullenders L; Tensen CP; Vrieling H
    BMC Cancer; 2013 Feb; 13():58. PubMed ID: 23379751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV biomarker genes for classification and risk stratification of cutaneous actinic keratoses and squamous cell carcinoma subtypes.
    Queen D; Shen Y; Trager MH; Lopez AT; Samie FH; Lewin JM; Niedt GW; Geskin LJ; Liu L
    FASEB J; 2020 Sep; 34(9):13022-13032. PubMed ID: 32776588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunohistochemical comparison of p16 expression in actinic keratoses and squamous cell carcinomas of the skin.
    Hodges A; Smoller BR
    Mod Pathol; 2002 Nov; 15(11):1121-5. PubMed ID: 12429789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haptoglobin polymorphism and the risk of actinic keratoses and cutaneous squamous cell carcinoma: A case-control study.
    Brochez L; Speeckaert R; De Bacquer D; Delanghe J; Hoorens I
    J Dermatol; 2019 Mar; 46(3):274-275. PubMed ID: 30614562
    [No Abstract]   [Full Text] [Related]  

  • 18. MYC gene numerical aberrations in actinic keratosis and cutaneous squamous cell carcinoma.
    Toll A; Salgado R; Yébenes M; Martín-Ezquerra G; Gilaberte M; Baró T; Solé F; Alameda F; Espinet B; Pujol RM
    Br J Dermatol; 2009 Nov; 161(5):1112-8. PubMed ID: 19673870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Detailed mapping and clinical significance of loss of heterozygosity on 9p13-23 in laryngeal squamous cell carcinoma by microsatellite analysis].
    Xu XF; Tang PZ; Cheng SJ
    Ai Zheng; 2003 May; 22(5):452-7. PubMed ID: 12753701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Esophageal squamous cell carcinomas with DNA replication errors (RER+) are associated with p16/pRb loss and wild-type p53.
    Mathew R; Arora S; Mathur M; Chattopadhyay TK; Ralhan R
    J Cancer Res Clin Oncol; 2001 Oct; 127(10):603-12. PubMed ID: 11599796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.