These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 21655818)
1. Insights into the transcriptome of oenocytes from Aedes aegypti pupae. Martins GF; Ramalho-Ortigão JM; Lobo NF; Severson DW; McDowell MA; Pimenta PF Mem Inst Oswaldo Cruz; 2011 May; 106(3):308-15. PubMed ID: 21655818 [TBL] [Abstract][Full Text] [Related]
2. Isolation, primary culture and morphological characterization of oenocytes from Aedes aegypti pupae. Martins GF; Guedes BA; Silva LM; Serrão JE; Fortes-Dias CL; Ramalho-Ortigão JM; Pimenta PF Tissue Cell; 2011 Apr; 43(2):83-90. PubMed ID: 21255811 [TBL] [Abstract][Full Text] [Related]
3. Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti. Poupardin R; Riaz MA; Vontas J; David JP; Reynaud S Insect Mol Biol; 2010 Apr; 19(2):185-93. PubMed ID: 20041961 [TBL] [Abstract][Full Text] [Related]
4. The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal. Price DP; Nagarajan V; Churbanov A; Houde P; Milligan B; Drake LL; Gustafson JE; Hansen IA PLoS One; 2011; 6(7):e22573. PubMed ID: 21818341 [TBL] [Abstract][Full Text] [Related]
5. RiboTag translatomic profiling of Drosophila oenocytes under aging and induced oxidative stress. Huang K; Chen W; Zhu F; Li PW; Kapahi P; Bai H BMC Genomics; 2019 Jan; 20(1):50. PubMed ID: 30651069 [TBL] [Abstract][Full Text] [Related]
6. A transcriptome analysis of the Aedes aegypti vitellogenic fat body. Feitosa FM; Calvo E; Merino EF; Durham AM; James AA; de Bianchi AG; Marinotti O; Capurro ML J Insect Sci; 2006; 6():1-26. PubMed ID: 19537968 [TBL] [Abstract][Full Text] [Related]
7. Use of subtracted libraries and macroarray to isolate developmentally specific genes from the mosquito, Aedes aegypti. Krebs KC; Brzoza KL; Lan Q Insect Biochem Mol Biol; 2002 Dec; 32(12):1757-67. PubMed ID: 12429127 [TBL] [Abstract][Full Text] [Related]
8. Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Riaz MA; Chandor-Proust A; Dauphin-Villemant C; Poupardin R; Jones CM; Strode C; Régent-Kloeckner M; David JP; Reynaud S Aquat Toxicol; 2013 Jan; 126():326-37. PubMed ID: 23058251 [TBL] [Abstract][Full Text] [Related]
9. Transcript profiling of the meiotic drive phenotype in testis of Aedes aegypti using suppressive subtractive hybridization. Shin D; Jin L; Lobo NF; Severson DW J Insect Physiol; 2011 Sep; 57(9):1220-6. PubMed ID: 21708167 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional analysis of four family 4 P450s in a Puerto Rico strain of Aedes aegypti (Diptera: Culicidae) compared with an Orlando strain and their possible functional roles in permethrin resistance. Reid WR; Thornton A; Pridgeon JW; Becnel JJ; Tang F; Estep A; Clark GG; Allan S; Liu N J Med Entomol; 2014 May; 51(3):605-15. PubMed ID: 24897853 [TBL] [Abstract][Full Text] [Related]
11. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Strode C; Wondji CS; David JP; Hawkes NJ; Lumjuan N; Nelson DR; Drane DR; Karunaratne SH; Hemingway J; Black WC; Ranson H Insect Biochem Mol Biol; 2008 Jan; 38(1):113-23. PubMed ID: 18070670 [TBL] [Abstract][Full Text] [Related]
13. Involvement of cecropin B in the formation of the Aedes aegypti mosquito cuticle. Liu WT; Tu WC; Lin CH; Yang UC; Chen CC Sci Rep; 2017 Nov; 7(1):16395. PubMed ID: 29180688 [TBL] [Abstract][Full Text] [Related]
14. Identification of genes encoding atypical odorant-binding proteins in Aedes albopictus (Diptera: Culicidae). Armbruster P; White S; Dzundza J; Crawford J; Zhao X J Med Entomol; 2009 Mar; 46(2):271-80. PubMed ID: 19351077 [TBL] [Abstract][Full Text] [Related]
15. Expression of genes encoding proteins involved in ecdysteroidogenesis in the female mosquito, Aedes aegypti. Sieglaff DH; Duncan KA; Brown MR Insect Biochem Mol Biol; 2005 May; 35(5):471-90. PubMed ID: 15804580 [TBL] [Abstract][Full Text] [Related]
16. Expression of AeaHsp26 and AeaHsp83 in Aedes aegypti (Diptera: Culicidae) larvae and pupae in response to heat shock stress. Zhao L; Becnel JJ; Clark GG; Linthicum KJ J Med Entomol; 2010 May; 47(3):367-75. PubMed ID: 20496584 [TBL] [Abstract][Full Text] [Related]