These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21656137)

  • 1. Advantages and challenges of increased antimicrobial copper use and copper mining.
    Elguindi J; Hao X; Lin Y; Alwathnani HA; Wei G; Rensing C
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):237-49. PubMed ID: 21656137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory.
    Wheeldon LJ; Worthington T; Lambert PA; Hilton AC; Lowden CJ; Elliott TS
    J Antimicrob Chemother; 2008 Sep; 62(3):522-5. PubMed ID: 18544601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The survival of Escherichia coli O157 on a range of metal surfaces.
    Wilks SA; Michels H; Keevil CW
    Int J Food Microbiol; 2005 Dec; 105(3):445-54. PubMed ID: 16253366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms.
    Gant VA; Wren MW; Rollins MS; Jeanes A; Hickok SS; Hall TJ
    J Antimicrob Chemother; 2007 Aug; 60(2):294-9. PubMed ID: 17567632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial activity of copper and silver nanofilms on nosocomial bacterial species.
    Codiţă I; Caplan DM; Drăgulescu EC; Lixandru BE; Coldea IL; Dragomirescu CC; Surdu-Bob C; Bădulescu M
    Roum Arch Microbiol Immunol; 2010; 69(4):204-12. PubMed ID: 21462835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1.
    Sriram MI; Kalishwaralal K; Deepak V; Gracerosepat R; Srisakthi K; Gurunathan S
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):174-81. PubMed ID: 21458961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Bacterial reducing qualities of copper-containing and non-copper-containing materials. I. Contamination and sedimentation in humid and dry conditions].
    de Veer I; Wilke K; Rüden H
    Zentralbl Hyg Umweltmed; 1993 Nov; 195(1):66-87. PubMed ID: 8117392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial activity of selected plant species from "the Argentine Puna" against sensitive and multi-resistant bacteria.
    Zampini IC; Cuello S; Alberto MR; Ordoñez RM; D' Almeida R; Solorzano E; Isla MI
    J Ethnopharmacol; 2009 Jul; 124(3):499-505. PubMed ID: 19467313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation: a novel approach for utilization of iron-ore wastes.
    Mohanty M; Dhal NK; Patra P; Das B; Reddy PS
    Rev Environ Contam Toxicol; 2010; 206():29-47. PubMed ID: 20652667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland.
    Sun LN; Zhang YF; He LY; Chen ZJ; Wang QY; Qian M; Sheng XF
    Bioresour Technol; 2010 Jan; 101(2):501-9. PubMed ID: 19762232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities.
    Du WX; Olsen CW; Avena-Bustillos RJ; McHugh TH; Levin CE; Friedman M
    J Food Sci; 2009 Sep; 74(7):M372-8. PubMed ID: 19895483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tigecycline: first of a new class of antimicrobial agents.
    Rose WE; Rybak MJ
    Pharmacotherapy; 2006 Aug; 26(8):1099-110. PubMed ID: 16863487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Laboratory Research to a Clinical Trial: Copper Alloy Surfaces Kill Bacteria and Reduce Hospital-Acquired Infections.
    Michels HT; Keevil CW; Salgado CD; Schmidt MG
    HERD; 2015; 9(1):64-79. PubMed ID: 26163568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment.
    Noyce JO; Michels H; Keevil CW
    J Hosp Infect; 2006 Jul; 63(3):289-97. PubMed ID: 16650507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene.
    Weaver L; Michels HT; Keevil CW
    J Hosp Infect; 2008 Feb; 68(2):145-51. PubMed ID: 18207284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper toxicity and the origin of bacterial resistance--new insights and applications.
    Dupont CL; Grass G; Rensing C
    Metallomics; 2011 Nov; 3(11):1109-18. PubMed ID: 21984219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human health consequences of use of antimicrobial agents in aquaculture.
    Heuer OE; Kruse H; Grave K; Collignon P; Karunasagar I; Angulo FJ
    Clin Infect Dis; 2009 Oct; 49(8):1248-53. PubMed ID: 19772389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial resistance in the hospital setting: impact, trends, and infection control measures.
    Stein GE
    Pharmacotherapy; 2005 Oct; 25(10 Pt 2):44S-54S. PubMed ID: 16178675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent development of small antimicrobial peptidomimetics.
    Niu Y; Wang RE; Wu H; Cai J
    Future Med Chem; 2012 Sep; 4(14):1853-62. PubMed ID: 23043481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.