These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21656219)

  • 1. The rate of force development scaling factor (RFD-SF): protocol, reliability, and muscle comparisons.
    Bellumori M; Jaric S; Knight CA
    Exp Brain Res; 2011 Jul; 212(3):359-69. PubMed ID: 21656219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodological considerations in the calculation of the rate of force development scaling factor.
    Djordjevic D; Uygur M
    Physiol Meas; 2017 Dec; 39(1):015001. PubMed ID: 29206109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method to assess rate of force relaxation: reliability and comparisons with rate of force development across various muscles.
    Mathern RM; Anhorn M; Uygur M
    Eur J Appl Physiol; 2019 Jan; 119(1):291-300. PubMed ID: 30367259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related decline in the rate of force development scaling factor.
    Bellumori M; Jaric S; Knight CA
    Motor Control; 2013 Oct; 17(4):370-81. PubMed ID: 23761421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rate of force development scaling factor: a review of underlying factors, assessment methods and potential for practical applications.
    Kozinc Ž; Smajla D; Šarabon N
    Eur J Appl Physiol; 2022 Apr; 122(4):861-873. PubMed ID: 35048184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age- and Sex-Related Differences in the Maximum Muscle Performance and Rate of Force Development Scaling Factor of Precision Grip Muscles.
    Corrêa TGC; Donato SVS; Lima KCA; Pereira RV; Uygur M; de Freitas PB
    Motor Control; 2020 Jan; 24(2):274-290. PubMed ID: 31972538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancements in the Protocol for Rate of Force Development/Relaxation Scaling Factor Evaluation.
    Smajla D; Žitnik J; Šarabon N
    Front Hum Neurosci; 2021; 15():654443. PubMed ID: 33854424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural and contractile determinants of burst-like explosive isometric contractions of the knee extensors.
    D'Emanuele S; Tarperi C; Rainoldi A; Schena F; Boccia G
    Scand J Med Sci Sports; 2023 Feb; 33(2):127-135. PubMed ID: 36229231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle strength testing: evaluation of tests of explosive force production.
    Mirkov DM; Nedeljkovic A; Milanovic S; Jaric S
    Eur J Appl Physiol; 2004 Mar; 91(2-3):147-54. PubMed ID: 14523563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental knee pain impairs joint torque and rate of force development in isometric and isokinetic muscle activation.
    Rice DA; Mannion J; Lewis GN; McNair PJ; Fort L
    Eur J Appl Physiol; 2019 Sep; 119(9):2065-2073. PubMed ID: 31332518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explosive neuromuscular performance of males versus females.
    Hannah R; Minshull C; Buckthorpe MW; Folland JP
    Exp Physiol; 2012 May; 97(5):618-29. PubMed ID: 22308163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased neural drive affects the early rate of force development after repeated burst-like isometric contractions.
    Boccia G; D'Emanuele S; Brustio PR; Rainoldi A; Schena F; Tarperi C
    Scand J Med Sci Sports; 2024 Jan; 34(1):e14528. PubMed ID: 37899668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Knee Position on the Reliability and Production of Maximal and Rapid Strength Characteristics During an Isometric Squat Test.
    Palmer TB; Pineda JG; Durham RM
    J Appl Biomech; 2018 Apr; 34(2):111-117. PubMed ID: 29017410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isometric tests to evaluate upper and lower extremity functioning in people with multiple sclerosis: reliability and validity.
    Uygur M; Barone DA; Dankel SJ; DeStefano N
    Mult Scler Relat Disord; 2022 Jul; 63():103817. PubMed ID: 35490451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of neural excitation measures from the surface electromyogram during rate-dependent muscle contractions.
    Josephson MD; Knight CA
    J Electromyogr Kinesiol; 2019 Feb; 44():15-20. PubMed ID: 30465942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-joint rate of force development testing protocol affects reliability and the smallest detectible difference.
    Drake D; Kennedy RA; Wallace ES
    J Sports Sci; 2019 Jul; 37(14):1570-1581. PubMed ID: 30810474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in the rate of muscle activation and rapid force characteristics.
    Thompson BJ; Ryan ED; Herda TJ; Costa PB; Herda AA; Cramer JT
    Age (Dordr); 2014 Apr; 36(2):839-49. PubMed ID: 24338233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of neuromuscular adjustments associated with sustained isometric contractions of four different muscle groups.
    Neyroud D; Rüttimann J; Mannion AF; Millet GY; Maffiuletti NA; Kayser B; Place N
    J Appl Physiol (1985); 2013 May; 114(10):1426-34. PubMed ID: 23471948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper-Limb Muscle Fatigability in Para-Athletes Quantified as the Rate of Force Development in Rapid Contractions of Submaximal Amplitude.
    Boccia G; Brustio PR; Beratto L; Peluso I; Ferrara R; Munzi D; Toti E; Raguzzini A; Sciarra T; Rainoldi A
    J Funct Morphol Kinesiol; 2024 Jun; 9(2):. PubMed ID: 38921644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex comparisons of non-local muscle fatigue in human elbow flexors and knee extensors.
    Ye X; Beck TW; Wages NP; Carr JC
    J Musculoskelet Neuronal Interact; 2018 Mar; 18(1):92-99. PubMed ID: 29504584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.