These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21656240)

  • 1. Interactions of uranyl ion with cytochrome b₅ and its His39Ser variant as revealed by molecular simulation in combination with experimental methods.
    Wan D; Liao LF; Zhao MM; Wu ML; Wu YM; Lin YW
    J Mol Model; 2012 Mar; 18(3):1009-13. PubMed ID: 21656240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions.
    Sun MH; Liu SQ; Du KJ; Nie CM; Lin YW
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():130-7. PubMed ID: 24051281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of cytochrome b
    Hu S; He B; Wang XJ; Gao SQ; Wen GB; Lin YW
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():118-123. PubMed ID: 27888781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distinct heme coordination environments and heme-binding stabilities of His39Ser and His39Cys mutants of cytochrome b5.
    Wang WH; Lu JX; Yao P; Xie Y; Huang ZX
    Protein Eng; 2003 Dec; 16(12):1047-54. PubMed ID: 14983086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray crystallography, CD and kinetic studies revealed the essence of the abnormal behaviors of the cytochrome b5 Phe35-->Tyr mutant.
    Yao P; Wu J; Wang YH; Sun BY; Xia ZX; Huang ZX
    Eur J Biochem; 2002 Sep; 269(17):4287-96. PubMed ID: 12199707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the electron transfer interface between cytochrome b5 and cytochrome c.
    Ren Y; Wang WH; Wang YH; Case M; Qian W; McLendon G; Huang ZX
    Biochemistry; 2004 Mar; 43(12):3527-36. PubMed ID: 15035623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5.
    Kollipara S; Tatireddy S; Pathirathne T; Rathnayake LK; Northrup SH
    J Phys Chem B; 2016 Aug; 120(33):8193-207. PubMed ID: 27059440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of heme transfer from cytochrome b5 to DNA aptamer.
    Lin YW; Sun MH; Wan D; Liao LF
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():365-9. PubMed ID: 22717695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of apo-cytochrome b5 utilizing heme transfer to apo-myoglobin.
    Mrazova B; Martinek V; Martinkova M; Sulc M; Frei E; Stiborova M
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():72-9. PubMed ID: 20027148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CYP2C9 protein interactions with cytochrome b(5): effects on the coupling of catalysis.
    Locuson CW; Wienkers LC; Jones JP; Tracy TS
    Drug Metab Dispos; 2007 Jul; 35(7):1174-81. PubMed ID: 17446262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5.
    Qian W; Sun YL; Wang YH; Zhuang JH; Xie Y; Huang ZX
    Biochemistry; 1998 Oct; 37(40):14137-50. PubMed ID: 9760250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward engineering the stability and hemin-binding properties of microsomal cytochromes b5 into rat outer mitochondrial membrane cytochrome b5: examining the influence of residues 25 and 71.
    Cowley AB; Altuve A; Kuchment O; Terzyan S; Zhang X; Rivera M; Benson DR
    Biochemistry; 2002 Oct; 41(39):11566-81. PubMed ID: 12269800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular modeling and dynamics simulation of a histidine-tagged cytochrome b₅.
    Lin YW; Ying TL; Liao LF
    J Mol Model; 2011 May; 17(5):971-8. PubMed ID: 20623307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulation of surface charged residues on the properties of cytochrome b5.
    Wang YH; Ren Y; Wang WH; Xie Y; Huang ZX
    J Protein Chem; 2001 Aug; 20(6):487-93. PubMed ID: 11760123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functions of fluctuation in the heme-binding loops of cytochrome b5 revealed in the process of heme incorporation.
    Ihara M; Takahashi S; Ishimori K; Morishima I
    Biochemistry; 2000 May; 39(20):5961-70. PubMed ID: 10821667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling of cytochrome b₅ with a single cytochrome c-like thioether linkage.
    Lin YW; Wu YM; Liao LF; Nie CM
    J Mol Model; 2012 Apr; 18(4):1553-60. PubMed ID: 21805125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the length and sequence of the linker domain of cytochrome b5 in stimulating cytochrome P450 2B4 catalysis.
    Clarke TA; Im SC; Bidwai A; Waskell L
    J Biol Chem; 2004 Aug; 279(35):36809-18. PubMed ID: 15194706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering out motion: introduction of a de novo disulfide bond and a salt bridge designed to close a dynamic cleft on the surface of cytochrome b5.
    Storch EM; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5054-64. PubMed ID: 10213608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The alpha-helical membrane spanning domain of cytochrome b5 interacts with cytochrome P450 via nonspecific interactions.
    Mulrooney SB; Meinhardt DR; Waskell L
    Biochim Biophys Acta; 2004 Nov; 1674(3):319-26. PubMed ID: 15541302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.