These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21656257)

  • 21. Histone H1 is a specific repressor of core histone acetylation in chromatin.
    Herrera JE; West KL; Schiltz RL; Nakatani Y; Bustin M
    Mol Cell Biol; 2000 Jan; 20(2):523-9. PubMed ID: 10611231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation.
    Wang Y; Li M; Stadler S; Correll S; Li P; Wang D; Hayama R; Leonelli L; Han H; Grigoryev SA; Allis CD; Coonrod SA
    J Cell Biol; 2009 Jan; 184(2):205-13. PubMed ID: 19153223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging roles of linker histones in regulating chromatin structure and function.
    Fyodorov DV; Zhou BR; Skoultchi AI; Bai Y
    Nat Rev Mol Cell Biol; 2018 Mar; 19(3):192-206. PubMed ID: 29018282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linker histone subtype composition and affinity for chromatin in situ in nucleated mature erythrocytes.
    Koutzamani E; Loborg H; Sarg B; Lindner HH; Rundquist I
    J Biol Chem; 2002 Nov; 277(47):44688-94. PubMed ID: 12223471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation.
    Popova EY; Krauss SW; Short SA; Lee G; Villalobos J; Etzell J; Koury MJ; Ney PA; Chasis JA; Grigoryev SA
    Chromosome Res; 2009; 17(1):47-64. PubMed ID: 19172406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of histone variant regions in chromatin: unlocking the linker?
    Green GR
    Biochem Cell Biol; 2001; 79(3):275-87. PubMed ID: 11467741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linker DNA destabilizes condensed chromatin.
    Green GR; Ferlita RR; Walkenhorst WF; Poccia DL
    Biochem Cell Biol; 2001; 79(3):349-63. PubMed ID: 11467748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histone H5 promotes the association of condensed chromatin fragments to give pseudo-higher-order structures.
    Thomas JO; Rees C; Pearson EC
    Eur J Biochem; 1985 Feb; 147(1):143-51. PubMed ID: 3971973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood.
    Popova EY; Claxton DF; Lukasova E; Bird PI; Grigoryev SA
    Exp Hematol; 2006 Apr; 34(4):453-62. PubMed ID: 16569592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin.
    Hiragami-Hamada K; Soeroes S; Nikolov M; Wilkins B; Kreuz S; Chen C; De La Rosa-Velázquez IA; Zenn HM; Kost N; Pohl W; Chernev A; Schwarzer D; Jenuwein T; Lorincz M; Zimmermann B; Walla PJ; Neumann H; Baubec T; Urlaub H; Fischle W
    Nat Commun; 2016 Apr; 7():11310. PubMed ID: 27090491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introduction "DNA and chromosomes: Physical and biological approaches".
    Braslau A; van Noort J; Arimondo PB
    Biochimie; 2010 Dec; 92(12):v-vi. PubMed ID: 21130300
    [No Abstract]   [Full Text] [Related]  

  • 35. Linker histone tails and N-tails of histone H3 are redundant: scanning force microscopy studies of reconstituted fibers.
    Leuba SH; Bustamante C; van Holde K; Zlatanova J
    Biophys J; 1998 Jun; 74(6):2830-9. PubMed ID: 9635737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionarily Conserved Principles Predict 3D Chromatin Organization.
    Rowley MJ; Nichols MH; Lyu X; Ando-Kuri M; Rivera ISM; Hermetz K; Wang P; Ruan Y; Corces VG
    Mol Cell; 2017 Sep; 67(5):837-852.e7. PubMed ID: 28826674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Major role of the histones H3-H4 in the folding of the chromatin fiber.
    Moore SC; Ausió J
    Biochem Biophys Res Commun; 1997 Jan; 230(1):136-9. PubMed ID: 9020030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction.
    Robinson PJ; An W; Routh A; Martino F; Chapman L; Roeder RG; Rhodes D
    J Mol Biol; 2008 Sep; 381(4):816-25. PubMed ID: 18653199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleosome Positioning and Spacing: From Mechanism to Function.
    Singh AK; Mueller-Planitz F
    J Mol Biol; 2021 Mar; 433(6):166847. PubMed ID: 33539878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Chromatin proteins and genetic control].
    Kruh J; Defer N; Kitzis A; Leibovitch MP; Tichonicky L
    C R Seances Soc Biol Fil; 1979; 173(2):331-44. PubMed ID: 228812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.