These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21656709)

  • 1. Dissolving carbon dioxide in high viscous substrates to accelerate biocatalytic reactions.
    Brummund J; Meyer F; Liese A; Eggers R; Hilterhaus L
    Biotechnol Bioeng; 2011 Nov; 108(11):2765-9. PubMed ID: 21656709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal formation of hexyl laurate by Lipozyme IM-77 in solvent-free system.
    Chang SW; Shaw JF; Shieh CH; Shieh CJ
    J Agric Food Chem; 2006 Sep; 54(19):7125-9. PubMed ID: 16968072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved activity and stability of Rhizopus oryzae lipase via immobilization for citronellol ester synthesis in supercritical carbon dioxide.
    Dhake KP; Deshmukh KM; Patil YP; Singhal RS; Bhanage BM
    J Biotechnol; 2011 Oct; 156(1):46-51. PubMed ID: 21884733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water activity effects on geranyl acetate synthesis catalyzed by novozym in supercritical ethane and in supercritical carbon dioxide.
    Peres C; Gomes da Silva MD; Barreiros S
    J Agric Food Chem; 2003 Mar; 51(7):1884-8. PubMed ID: 12643646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed fluids.
    Dalla Rosa C; Morandim MB; Ninow JL; Oliveira D; Treichel H; Oliveira JV
    Bioresour Technol; 2009 Dec; 100(23):5818-26. PubMed ID: 19616937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of reaction parameters on synthesis of Citronellyl laurate ester via immobilized Candida rugosa lipase in organic media.
    Serri NA; Kamaruddin AH; Long WS
    Bioprocess Biosyst Eng; 2006 Oct; 29(4):253-60. PubMed ID: 16868763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Activity by Supercritical CO
    Yadav GD; Varghese S
    Appl Biochem Biotechnol; 2020 Feb; 190(2):686-702. PubMed ID: 31456111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipase-catalyzed production of a bioactive terpene ester in supercritical carbon dioxide.
    Liu KJ; Huang YR
    J Biotechnol; 2010 Apr; 146(4):215-20. PubMed ID: 20219605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of solvent-free lipase-catalyzed glycerolysis of olive oil in surfactant system.
    Valério A; Krüger RL; Ninow J; Corazza FC; de Oliveira D; Oliveira JV; Corazza ML
    J Agric Food Chem; 2009 Sep; 57(18):8350-6. PubMed ID: 19708657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase-catalyzed synthesis and properties of poly[(12-hydroxydodecanoate)-co-(12-hydroxystearate)] directed towards novel green and sustainable elastomers.
    Ebata H; Toshima K; Matsumura S
    Macromol Biosci; 2008 Jan; 8(1):38-45. PubMed ID: 17955511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrates emulsification process to improve lipase-catalyzed sardine oil glycerolysis in different systems. Evaluation of lipid oxidation of the reaction products.
    Solaesa ÁG; Sanz MT; Melgosa R; Beltrán S
    Food Res Int; 2017 Oct; 100(Pt 1):572-578. PubMed ID: 28873723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase-catalyzed simultaneous biosynthesis of biodiesel and glycerol carbonate from corn oil in dimethyl carbonate.
    Min JY; Lee EY
    Biotechnol Lett; 2011 Sep; 33(9):1789-96. PubMed ID: 21516311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase-catalyzed esterification of (S)-naproxen ethyl ester in supercritical carbon dioxide.
    Kwon CH; Lee JH; Kim SW; Kang JW
    J Microbiol Biotechnol; 2009 Dec; 19(12):1596-602. PubMed ID: 20075625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process.
    Lee JH; Kim SB; Kang SW; Song YS; Park C; Han SO; Kim SW
    Bioresour Technol; 2011 Jan; 102(2):2105-8. PubMed ID: 20813518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide.
    Knez Z; Laudani CG; Habulin M; Reverchon E
    Biotechnol Bioeng; 2007 Aug; 97(6):1366-75. PubMed ID: 17221889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Esterification reactions catalyzed by lipases immobilized in organogels: effect of temperature and substrate diffusion.
    Zoumpanioti M; Parmaklis P; de María PD; Stamatis H; Sinisterra JV; Xenakis A
    Biotechnol Lett; 2008 Sep; 30(9):1627-31. PubMed ID: 18427927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chain length on enzymatic hydrolysis of p-nitrophenyl esters in supercritical carbon dioxide.
    Varma MN; Madras G
    Appl Biochem Biotechnol; 2008 Mar; 144(3):213-23. PubMed ID: 18556811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-free enzymatic preparation of feruloylated monoacylglycerols optimized by response surface methodology.
    Sun SD; Shan L; Liu YF; Jin QZ; Zhang LX; Wang XG
    J Agric Food Chem; 2008 Jan; 56(2):442-7. PubMed ID: 18092748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chain length of alcohol on the lipase-catalyzed esterification of propionic acid in supercritical carbon dioxide.
    Varma MN; Madras G
    Appl Biochem Biotechnol; 2010 Apr; 160(8):2342-54. PubMed ID: 19575152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative fatty acid selectivity of lipases in esterification reactions with glycerol and diol analogues in organic media.
    Lee CH; Parkin KL
    Biotechnol Prog; 2000; 16(3):372-7. PubMed ID: 10835238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.