BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21656878)

  • 1. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide.
    Zhang C; Yuan Y; Zhang S; Wang Y; Liu Z
    Angew Chem Int Ed Engl; 2011 Jul; 50(30):6851-4. PubMed ID: 21656878
    [No Abstract]   [Full Text] [Related]  

  • 2. Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform.
    Liu C; Wang Z; Jia H; Li Z
    Chem Commun (Camb); 2011 Apr; 47(16):4661-3. PubMed ID: 21409284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A graphene oxide based biosensor for microcystins detection by fluorescence resonance energy transfer.
    Shi Y; Wu J; Sun Y; Zhang Y; Wen Z; Dai H; Wang H; Li Z
    Biosens Bioelectron; 2012; 38(1):31-6. PubMed ID: 22727517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer.
    Huang ST; Shi Y; Li NB; Luo HQ
    Chem Commun (Camb); 2012 Jan; 48(5):747-9. PubMed ID: 22121502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity.
    Zhang M; Yin BC; Wang XF; Ye BC
    Chem Commun (Camb); 2011 Feb; 47(8):2399-401. PubMed ID: 21305066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide.
    Alonso-Cristobal P; Vilela P; El-Sagheer A; Lopez-Cabarcos E; Brown T; Muskens OL; Rubio-Retama J; Kanaras AG
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12422-9. PubMed ID: 25622622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide.
    Piao Y; Liu F; Seo TS
    Chem Commun (Camb); 2011 Nov; 47(44):12149-51. PubMed ID: 21993302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoluminescent graphene oxide ink to print sensors onto microporous membranes for versatile visualization bioassays.
    Mei Q; Zhang Z
    Angew Chem Int Ed Engl; 2012 Jun; 51(23):5602-6. PubMed ID: 22539356
    [No Abstract]   [Full Text] [Related]  

  • 9. DNA-length-dependent fluorescence signaling on graphene oxide surface.
    Huang PJ; Liu J
    Small; 2012 Apr; 8(7):977-83. PubMed ID: 22323437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Well-dispersed chitosan/graphene oxide nanocomposites.
    Yang X; Tu Y; Li L; Shang S; Tao XM
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1707-13. PubMed ID: 20527778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer.
    Liu F; Choi JY; Seo TS
    Biosens Bioelectron; 2010 Jun; 25(10):2361-5. PubMed ID: 20299201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer.
    Chen Q; Wei W; Lin JM
    Biosens Bioelectron; 2011 Jul; 26(11):4497-502. PubMed ID: 21621405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective and sensitive method for cysteine detection based on fluorescence resonance energy transfer between FAM-tagged ssDNA and graphene oxide.
    Liu H; Wang Y; Shen A; Zhou X; Hu J
    Talanta; 2012 May; 93():330-5. PubMed ID: 22483919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-switchable electrochemical sensing platform based on chitosan-reduced graphene oxide/concanavalin a layer for assay of glucose and urea.
    Song Y; Liu H; Tan H; Xu F; Jia J; Zhang L; Li Z; Wang L
    Anal Chem; 2014 Feb; 86(4):1980-7. PubMed ID: 24502773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer.
    Bi S; Zhao T; Luo B
    Chem Commun (Camb); 2012 Jan; 48(1):106-8. PubMed ID: 22037540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles.
    Sun X; Liu B; Li S; Li F
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():33-8. PubMed ID: 26945122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules.
    Dong H; Gao W; Yan F; Ji H; Ju H
    Anal Chem; 2010 Jul; 82(13):5511-7. PubMed ID: 20524633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene.
    Wei W; Xu C; Ren J; Xu B; Qu X
    Chem Commun (Camb); 2012 Jan; 48(9):1284-6. PubMed ID: 22179588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single lanthanide-doped oxide nanoparticles as donors in fluorescence resonance energy transfer experiments.
    Casanova D; Giaume D; Gacoin T; Boilot JP; Alexandrou A
    J Phys Chem B; 2006 Oct; 110(39):19264-70. PubMed ID: 17004778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing.
    Shan C; Yang H; Han D; Zhang Q; Ivaska A; Niu L
    Biosens Bioelectron; 2010 Jan; 25(5):1070-4. PubMed ID: 19883999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.