BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21657259)

  • 21. Determining charge transport pathways through single porphyrin molecules using scanning tunneling microscopy break junctions.
    Li Z; Borguet E
    J Am Chem Soc; 2012 Jan; 134(1):63-6. PubMed ID: 22133080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Azobenzene-linked porphyrin-fullerene dyads.
    Schuster DI; Li K; Guldi DM; Palkar A; Echegoyen L; Stanisky C; Cross RJ; Niemi M; Tkachenko NV; Lemmetyinen H
    J Am Chem Soc; 2007 Dec; 129(51):15973-82. PubMed ID: 18052375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. STM investigation of temperature-dependent two-dimensional supramolecular architectures of C60 and amino-tetraphenylporphyrin on Ag(110).
    Di Marino M; Sedona F; Sambi M; Carofiglio T; Lubian E; Casarin M; Tondello E
    Langmuir; 2010 Feb; 26(4):2466-72. PubMed ID: 19810724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing charge transport of ruthenium-complex-based molecular wires at the single-molecule level.
    Liu K; Wang X; Wang F
    ACS Nano; 2008 Nov; 2(11):2315-23. PubMed ID: 19206398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester Langmuir-Blodgett bulk hetero junctions on indium tin oxide.
    Kusano H; Ishikawa T; Satoh A; Sanda A; Hishinuma T; Kitagawa M
    J Nanosci Nanotechnol; 2012 Jan; 12(1):719-24. PubMed ID: 22524046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-organization of porphyrins and fullerenes for molecular photoelectrochemical devices.
    Umeyama T; Imahori H
    Photosynth Res; 2006 Jan; 87(1):63-71. PubMed ID: 16408146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging of localized electronic states at a nonconducting surface by single-electron tunneling force microscopy.
    Bussmann EB; Zheng N; Williams CC
    Nano Lett; 2006 Nov; 6(11):2577-80. PubMed ID: 17090094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface.
    Hulsken B; Van Hameren R; Gerritsen JW; Khoury T; Thordarson P; Crossley MJ; Rowan AE; Nolte RJ; Elemans JA; Speller S
    Nat Nanotechnol; 2007 May; 2(5):285-9. PubMed ID: 18654285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scanning tunnelling microscopy: closing in on molecular junctions.
    Heinrich A
    Nat Nanotechnol; 2011 Jan; 6(1):7-8. PubMed ID: 21179095
    [No Abstract]   [Full Text] [Related]  

  • 30. Patterning of self-assembled monolayers based on differences in molecular conductance.
    Shen C; Buck M
    Nanotechnology; 2009 Jun; 20(24):245306. PubMed ID: 19468158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocurrent in Multilayered Assemblies of Porphyrin-Fullerene Covalent Dyads: Evidence for Channels for Charge Transport.
    Konev AS; Khlebnikov AF; Levin OV; Lukyanov DA; Zorin IM
    ChemSusChem; 2016 Apr; 9(7):676-86. PubMed ID: 26893269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear optical properties of ferrocene- and porphyrin-[60]fullerene dyads.
    Xenogiannopoulou E; Medved M; Iliopoulos K; Couris S; Papadopoulos MG; Bonifazi D; Sooambar C; Mateo-Alonso A; Prato M
    Chemphyschem; 2007 May; 8(7):1056-64. PubMed ID: 17352004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Primary charge-recombination in an artificial photosynthetic reaction center.
    Kobori Y; Yamauchi S; Akiyama K; Tero-Kubota S; Imahori H; Fukuzumi S; Norris JR
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10017-22. PubMed ID: 16014413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Creating a uniform distribution of fullerene C60 nanorods in a polymer matrix and its photovoltaic applications.
    Lu G; Li L; Yang X
    Small; 2008 May; 4(5):601-6. PubMed ID: 18446798
    [No Abstract]   [Full Text] [Related]  

  • 35. Light-harvesting supramolecular porphyrin macrocycle accommodating a fullerene-tripodal ligand.
    Kuramochi Y; Satake A; Itou M; Ogawa K; Araki Y; Ito O; Kobuke Y
    Chemistry; 2008; 14(9):2827-41. PubMed ID: 18228544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physicochemical insights in supramolecular interaction of fullerenes C60 and C70 with a monoporphyrin in presence of silver nanoparticles.
    Mitra R; Chattopadhyay S; Bhattacharya S
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():284-93. PubMed ID: 22277621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical switching of porphyrin-coated silicon nanowire field effect transistors.
    Winkelmann CB; Ionica I; Chevalier X; Royal G; Bucher C; Bouchiat V
    Nano Lett; 2007 Jun; 7(6):1454-8. PubMed ID: 17497816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-Molecule Electronics: Chemical and Analytical Perspectives.
    Nichols RJ; Higgins SJ
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():389-417. PubMed ID: 26048551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers.
    Xu K; Cao P; Heath JR
    Nano Lett; 2009 Dec; 9(12):4446-51. PubMed ID: 19852488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly conductive coaxial SnO(2)-In(2)O(3) heterostructured nanowires for Li ion battery electrodes.
    Kim DW; Hwang IS; Kwon SJ; Kang HY; Park KS; Choi YJ; Choi KJ; Park JG
    Nano Lett; 2007 Oct; 7(10):3041-5. PubMed ID: 17760477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.