BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 21658251)

  • 1. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex.
    Kendrick KM; Zhan Y; Fischer H; Nicol AU; Zhang X; Feng J
    BMC Neurosci; 2011 Jun; 12():55. PubMed ID: 21658251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network.
    Herman PA; Lundqvist M; Lansner A
    Brain Res; 2013 Nov; 1536():68-87. PubMed ID: 23939226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational study on altered theta-gamma coupling during learning and phase coding.
    Zhang X; Kendrick KM; Zhou H; Zhan Y; Feng J
    PLoS One; 2012; 7(6):e36472. PubMed ID: 22737207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mice With Decreased Number of Interneurons Exhibit Aberrant Spontaneous and Oscillatory Activity in the Cortex.
    Kalemaki K; Konstantoudaki X; Tivodar S; Sidiropoulou K; Karagogeos D
    Front Neural Circuits; 2018; 12():96. PubMed ID: 30429776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical dynamics during naturalistic sensory stimulations: experiments and models.
    Mazzoni A; Brunel N; Cavallari S; Logothetis NK; Panzeri S
    J Physiol Paris; 2011; 105(1-3):2-15. PubMed ID: 21907800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of prefrontal gamma amplitude and theta phase is strengthened in trace eyeblink conditioning.
    Shearkhani O; Takehara-Nishiuchi K
    Neurobiol Learn Mem; 2013 Feb; 100():117-26. PubMed ID: 23267870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.
    Majaj NJ; Hong H; Solomon EA; DiCarlo JJ
    J Neurosci; 2015 Sep; 35(39):13402-18. PubMed ID: 26424887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency oscillations (20 to 120 Hz) and their role in visual processing.
    Munk MH; Neuenschwander S
    J Clin Neurophysiol; 2000 Jul; 17(4):341-60. PubMed ID: 11012039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic stimulation of cultured neuronal networks boosts low-frequency oscillatory activity at theta and gamma with spikes phase-locked to gamma frequencies.
    Leondopulos SS; Boehler MD; Wheeler BC; Brewer GJ
    J Neural Eng; 2012 Apr; 9(2):026015. PubMed ID: 22361724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visually Evoked 3-5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice.
    Einstein MC; Polack PO; Tran DT; Golshani P
    J Neurosci; 2017 May; 37(20):5084-5098. PubMed ID: 28432140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory synchrony as a mechanism for attentional gain modulation.
    Tiesinga PH; Fellous JM; Salinas E; José JV; Sejnowski TJ
    J Physiol Paris; 2004; 98(4-6):296-314. PubMed ID: 16274973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Sync/deSync Model: How a Synchronized Hippocampus and a Desynchronized Neocortex Code Memories.
    Parish G; Hanslmayr S; Bowman H
    J Neurosci; 2018 Apr; 38(14):3428-3440. PubMed ID: 29487122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different types of signal coupling in the visual cortex related to neural mechanisms of associative processing and perception.
    Eckhorn R; Gail AM; Bruns A; Gabriel A; Al-Shaikhli B; Saam M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1039-52. PubMed ID: 15484881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex.
    van Wingerden M; Vinck M; Lankelma JV; Pennartz CM
    J Neurosci; 2010 Jul; 30(30):10025-38. PubMed ID: 20668187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity in oscillatory coupling between hippocampus and cortex.
    Igarashi KM
    Curr Opin Neurobiol; 2015 Dec; 35():163-8. PubMed ID: 26425996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voluntary control of intracortical oscillations for reconfiguration of network activity.
    Corlier J; Valderrama M; Navarrete M; Lehongre K; Hasboun D; Adam C; Belaid H; Clémenceau S; Baulac M; Charpier S; Navarro V; Le Van Quyen M
    Sci Rep; 2016 Nov; 6():36255. PubMed ID: 27808225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency oscillations arising from competitive interactions between visual stimuli in macaque inferotemporal cortex.
    Rollenhagen JE; Olson CR
    J Neurophysiol; 2005 Nov; 94(5):3368-87. PubMed ID: 15928064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect.
    Wallenstein GV; Hasselmo ME
    J Neurophysiol; 1997 Jul; 78(1):393-408. PubMed ID: 9242288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.