These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 21658417)
1. Cortical activity and children's rituals, habits and other repetitive behavior: a visual P300 study. Evans DW; Maliken A Behav Brain Res; 2011 Oct; 224(1):174-9. PubMed ID: 21658417 [TBL] [Abstract][Full Text] [Related]
2. Affective and neuropsychological correlates of children's rituals and compulsive-like behaviors: continuities and discontinuities with obsessive-compulsive disorder. Pietrefesa AS; Evans DW Brain Cogn; 2007 Oct; 65(1):36-46. PubMed ID: 17630062 [TBL] [Abstract][Full Text] [Related]
3. Greater sensitivity of the P300 component to bimodal stimulation in an event-related potentials oddball task. Campanella S; Delle-Vigne D; Kornreich C; Verbanck P Clin Neurophysiol; 2012 May; 123(5):937-46. PubMed ID: 22119176 [TBL] [Abstract][Full Text] [Related]
4. Asymmetry of P3 amplitude during oddball tasks reflects the unnaturalness of visual stimuli. Minami T; Goto K; Kitazaki M; Nakauchi S Neuroreport; 2009 Oct; 20(16):1471-6. PubMed ID: 19786924 [TBL] [Abstract][Full Text] [Related]
5. Mental chronometry of target detection: human thalamus leads cortex. Klostermann F; Wahl M; Marzinzik F; Schneider GH; Kupsch A; Curio G Brain; 2006 Apr; 129(Pt 4):923-31. PubMed ID: 16418179 [TBL] [Abstract][Full Text] [Related]
6. Facial identity recognition in children with autism spectrum disorders revealed by P300 analysis: a preliminary study. Gunji A; Goto T; Kita Y; Sakuma R; Kokubo N; Koike T; Sakihara K; Kaga M; Inagaki M Brain Dev; 2013 Apr; 35(4):293-8. PubMed ID: 23398956 [TBL] [Abstract][Full Text] [Related]
7. Use of swLORETA to localize the cortical sources of target- and distracter-elicited P300 components. Bocquillon P; Bourriez JL; Palmero-Soler E; Betrouni N; Houdayer E; Derambure P; Dujardin K Clin Neurophysiol; 2011 Oct; 122(10):1991-2002. PubMed ID: 21493130 [TBL] [Abstract][Full Text] [Related]
8. Auditory and visual P300 reflecting cognitive improvement in patients with schizophrenia with quetiapine: a pilot study. Park EJ; Han SI; Jeon YW Prog Neuropsychopharmacol Biol Psychiatry; 2010 May; 34(4):674-80. PubMed ID: 20304022 [TBL] [Abstract][Full Text] [Related]
9. P300-amplitudes in upper limb amputees with and without phantom limb pain in a visual oddball paradigm. Karl A; Diers M; Flor H Pain; 2004 Jul; 110(1-2):40-8. PubMed ID: 15275750 [TBL] [Abstract][Full Text] [Related]
10. Inter- and intra-hemispheric processing of visual event-related potentials in the absence of the corpus callosum. Bayard S; Gosselin N; Robert M; Lassonde M J Cogn Neurosci; 2004 Apr; 16(3):401-14. PubMed ID: 15072676 [TBL] [Abstract][Full Text] [Related]
11. Cognitive event-related potentials differentiate schizophrenia with obsessive-compulsive disorder (schizo-OCD) from OCD and schizophrenia without OC symptoms. Pallanti S; Castellini G; Chamberlain SR; Quercioli L; Zaccara G; Fineberg NA Psychiatry Res; 2009 Nov; 170(1):52-60. PubMed ID: 19800695 [TBL] [Abstract][Full Text] [Related]
13. Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention. Musso F; Konrad A; Vucurevic G; Schäffner C; Friedrich B; Frech P; Stoeter P; Winterer G Neuroimage; 2006 Feb; 29(4):1311-8. PubMed ID: 16406256 [TBL] [Abstract][Full Text] [Related]
15. Event-related wave activity in the EEG provides new marker of ADHD. Alexander DM; Hermens DF; Keage HA; Clark CR; Williams LM; Kohn MR; Clarke SD; Lamb C; Gordon E Clin Neurophysiol; 2008 Jan; 119(1):163-79. PubMed ID: 18054279 [TBL] [Abstract][Full Text] [Related]
16. With long intervals, inter-stimulus interval is the critical determinant of the human P300 amplitude. Sambeth A; Maes JH; Brankack J Neurosci Lett; 2004 Apr; 359(3):143-6. PubMed ID: 15050684 [TBL] [Abstract][Full Text] [Related]
17. Going AWOL in the brain: mind wandering reduces cortical analysis of external events. Smallwood J; Beach E; Schooler JW; Handy TC J Cogn Neurosci; 2008 Mar; 20(3):458-69. PubMed ID: 18004943 [TBL] [Abstract][Full Text] [Related]
18. Repetitive and ritualistic behaviour in children with Prader-Willi syndrome and children with autism. Greaves N; Prince E; Evans DW; Charman T J Intellect Disabil Res; 2006 Feb; 50(Pt 2):92-100. PubMed ID: 16403198 [TBL] [Abstract][Full Text] [Related]
19. Model comparison for automatic characterization and classification of average ERPs using visual oddball paradigm. Merzagora AC; Butti M; Polikar R; Izzetoglu M; Bunce S; Cerutti S; Bianchi AM; Onaral B Clin Neurophysiol; 2009 Feb; 120(2):264-74. PubMed ID: 19062338 [TBL] [Abstract][Full Text] [Related]
20. Frequency-domain analysis of fast oddball responses to visual stimuli: a feasibility study. Heinrich SP; Mell D; Bach M Int J Psychophysiol; 2009 Sep; 73(3):287-93. PubMed ID: 19426768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]