These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21658473)

  • 1. Pathogen-mimetic stealth nanocarriers for drug delivery: a future possibility.
    Cavadas M; González-Fernández A; Franco R
    Nanomedicine; 2011 Dec; 7(6):730-43. PubMed ID: 21658473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired "Active" Stealth Magneto-Nanomicelles for Theranostics Combining Efficient MRI and Enhanced Drug Delivery.
    Zhang KL; Zhou J; Zhou H; Wu Y; Liu R; Wang LL; Lin WW; Huang G; Yang HH
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30502-30509. PubMed ID: 28812358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives.
    Shi D; Beasock D; Fessler A; Szebeni J; Ljubimova JY; Afonin KA; Dobrovolskaia MA
    Adv Drug Deliv Rev; 2022 Jan; 180():114079. PubMed ID: 34902516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.
    Suk JS; Xu Q; Kim N; Hanes J; Ensign LM
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):28-51. PubMed ID: 26456916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilicity Regulates the Stealth Properties of Polyphosphoester-Coated Nanocarriers.
    Simon J; Wolf T; Klein K; Landfester K; Wurm FR; Mailänder V
    Angew Chem Int Ed Engl; 2018 May; 57(19):5548-5553. PubMed ID: 29479798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stealth Coating of Nanoparticles in Drug-Delivery Systems.
    Fam SY; Chee CF; Yong CY; Ho KL; Mariatulqabtiah AR; Tan WS
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32325941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fate of Nanoparticles In Vivo and the Strategy of Designing Stealth Nanoparticle for Drug Delivery.
    Bao J; Zhang Q; Duan T; Hu R; Tang J
    Curr Drug Targets; 2021; 22(8):922-946. PubMed ID: 33461465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stealth nanoparticles in oncology: Facing the PEG dilemma.
    Zalba S; Ten Hagen TLM; Burgui C; Garrido MJ
    J Control Release; 2022 Nov; 351():22-36. PubMed ID: 36087801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design attributes of long-circulating polymeric drug delivery vehicles.
    Beck-Broichsitter M; Nicolas J; Couvreur P
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt B):304-17. PubMed ID: 25857838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime.
    Li M; Jiang S; Simon J; Paßlick D; Frey ML; Wagner M; Mailänder V; Crespy D; Landfester K
    Nano Lett; 2021 Feb; 21(4):1591-1598. PubMed ID: 33560851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene glycol)-block-poly(ε-caprolactone)-and phospholipid-based stealth nanoparticles with enhanced therapeutic efficacy on murine breast cancer by improved intracellular drug delivery.
    He X; Li L; Su H; Zhou D; Song H; Wang L; Jiang X
    Int J Nanomedicine; 2015; 10():1791-804. PubMed ID: 25784805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pegylation of poly(γ-benzyl-L-glutamate) nanoparticles is efficient for avoiding mononuclear phagocyte system capture in rats.
    Ozcan I; Segura-Sánchez F; Bouchemal K; Sezak M; Ozer O; Güneri T; Ponchel G
    Int J Nanomedicine; 2010 Dec; 5():1103-11. PubMed ID: 21270961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphosphoester surfactants as general stealth coatings for polymeric nanocarriers.
    Bauer KN; Simon J; Mailänder V; Landfester K; Wurm FR
    Acta Biomater; 2020 Oct; 116():318-328. PubMed ID: 32937204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of stealth lipids in nanomedicine-based drug carriers.
    Rastogi M; Saha RN; Alexander A; Singhvi G; Puri A; Dubey SK
    Chem Phys Lipids; 2021 Mar; 235():105036. PubMed ID: 33412151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting.
    Huynh NT; Roger E; Lautram N; Benoît JP; Passirani C
    Nanomedicine (Lond); 2010 Nov; 5(9):1415-33. PubMed ID: 21128723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sheddable coatings for long-circulating nanoparticles.
    Romberg B; Hennink WE; Storm G
    Pharm Res; 2008 Jan; 25(1):55-71. PubMed ID: 17551809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol-Modified Nanocarriers.
    Danner AK; Schöttler S; Alexandrino E; Hammer S; Landfester K; Mailänder V; Morsbach S; Frey H; Wurm FR
    Macromol Biosci; 2019 May; 19(5):e1800468. PubMed ID: 30913379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymeric protective agents for nanoparticles in drug delivery and targeting.
    Mogoşanu GD; Grumezescu AM; Bejenaru C; Bejenaru LE
    Int J Pharm; 2016 Aug; 510(2):419-29. PubMed ID: 26972379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Well-Characterized PEG-Coated Nanoparticles for Elucidating Biological Barriers to Drug Delivery.
    Yang Q; Lai SK
    Methods Mol Biol; 2017; 1530():125-137. PubMed ID: 28150200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled biotransesterified cyclodextrins as potential Artemisinin nanocarriers. II: In vitro behavior toward the immune system and in vivo biodistribution assessment of unloaded nanoparticles.
    Yaméogo JB; Gèze A; Choisnard L; Putaux JL; Mazet R; Passirani C; Keramidas M; Coll JL; Lautram N; Bejaud J; Semdé R; Wouessidjewe D
    Eur J Pharm Biopharm; 2014 Nov; 88(3):683-94. PubMed ID: 25204521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.