These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21658696)

  • 1. Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching.
    Koshiyama K; Wada S
    J Biomech; 2011 Jul; 44(11):2053-8. PubMed ID: 21658696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Stretching Speed on Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular Dynamics Simulation.
    Shigematsu T; Koshiyama K; Wada S
    Sci Rep; 2015 Oct; 5():15369. PubMed ID: 26471872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organization of a stable pore structure in a phospholipid bilayer.
    Koshiyama K; Yano T; Kodama T
    Phys Rev Lett; 2010 Jul; 105(1):018105. PubMed ID: 20867485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of interlayer water embedded in phospholipid bilayer.
    Han WB; Kim SJ; An HH; Kim HS; Kim Y; Yoon CS
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():49-56. PubMed ID: 24433886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop.
    Tieleman DP; Marrink SJ
    J Am Chem Soc; 2006 Sep; 128(38):12462-7. PubMed ID: 16984196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of pore formation in stretched phospholipid/cholesterol bilayers.
    Shigematsu T; Koshiyama K; Wada S
    Chem Phys Lipids; 2014 Oct; 183():43-9. PubMed ID: 24863643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers.
    Vernier PT; Ziegler MJ
    J Phys Chem B; 2007 Nov; 111(45):12993-6. PubMed ID: 17949035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; Vácha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential.
    Vernier PT; Ziegler MJ; Sun Y; Chang WV; Gundersen MA; Tieleman DP
    J Am Chem Soc; 2006 May; 128(19):6288-9. PubMed ID: 16683772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in free energy barrier for water permeation by stretch-induced phase transitions in phospholipid/cholesterol bilayers.
    Shigematsu T; Koshiyama K
    J Biomol Struct Dyn; 2024 Oct; 42(17):9159-9166. PubMed ID: 37656194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore formation in phospholipid bilayers by branched-chain pyrogallol[4]arenes.
    Negin S; Daschbach MM; Kulikov OV; Rath N; Gokel GW
    J Am Chem Soc; 2011 Mar; 133(10):3234-7. PubMed ID: 21341788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of water at the interface with phospholipid bilayers.
    Bhide SY; Berkowitz ML
    J Chem Phys; 2005 Dec; 123(22):224702. PubMed ID: 16375490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of Aβ25-35 β-barrel-like oligomers with anionic lipid bilayer and resulting membrane leakage: an all-atom molecular dynamics study.
    Chang Z; Luo Y; Zhang Y; Wei G
    J Phys Chem B; 2011 Feb; 115(5):1165-74. PubMed ID: 21192698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of lipid oxidation on the water permeability of phospholipids bilayers.
    Lis M; Wizert A; Przybylo M; Langner M; Swiatek J; Jungwirth P; Cwiklik L
    Phys Chem Chem Phys; 2011 Oct; 13(39):17555-63. PubMed ID: 21897935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore nucleation in mechanically stretched bilayer membranes.
    Wang ZJ; Frenkel D
    J Chem Phys; 2005 Oct; 123(15):154701. PubMed ID: 16252963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peridynamic Modeling of Ruptures in Biomembranes.
    Taylor M; Gözen I; Patel S; Jesorka A; Bertoldi K
    PLoS One; 2016; 11(11):e0165947. PubMed ID: 27829001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations.
    Santo KP; Berkowitz ML
    J Chem Phys; 2014 Feb; 140(5):054906. PubMed ID: 24511978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.