These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 21659156)

  • 1. Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2.
    Kouwenberg LL; McElwain JC; Kürschner WM; Wagner F; Beerling DJ; Mayle FE; Visscher H
    Am J Bot; 2003 Apr; 90(4):610-9. PubMed ID: 21659156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in stomatal frequency and size during elongation of Tsuga heterophylla needles.
    Kouwenberg LL; Kürschner WM; Visscher H
    Ann Bot; 2004 Oct; 94(4):561-9. PubMed ID: 15321836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal frequency responses in hardwood-swamp vegetation from Florida during a 60-year continuous CO2 increase.
    Wagner F; Dilcher DL; Visscher H
    Am J Bot; 2005 Apr; 92(4):690-5. PubMed ID: 21652447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change.
    Chen LQ; Li CS; Chaloner WG; Beerling DJ; Sun QG; Collinson ME; Mitchell PL
    Am J Bot; 2001 Jul; 88(7):1309-15. PubMed ID: 11454631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal frequency of Quercus glauca from three material sources shows the same inverse response to atmospheric pCO2.
    Hu JJ; Xing YW; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2019 Jul; 123(7):1147-1158. PubMed ID: 30861064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence of leaf display and photosynthetic characteristics of understory Abies amabilis and Tsuga heterophylla in an old-growth forest in southwestern Washington State, USA.
    Ishii H; Yoshimura K; Mori A
    Tree Physiol; 2009 Aug; 29(8):989-98. PubMed ID: 19525494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paleoatmospheric signatures in neogene fossil leaves.
    Van Der Burgh J; Visscher H; Dilcher DL; Kürschner WM
    Science; 1993 Jun; 260(5115):1788-90. PubMed ID: 17793657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica x L. kaempferi) under elevated CO2 concentration with low nutrient availability.
    Watanabe M; Watanabe Y; Kitaoka S; Utsugi H; Kita K; Koike T
    Tree Physiol; 2011 Sep; 31(9):965-75. PubMed ID: 21813517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.
    Haworth M; Elliott-Kingston C; McElwain JC
    Oecologia; 2011 Sep; 167(1):11-9. PubMed ID: 21461935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers.
    Haworth M; Heath J; McElwain JC
    Ann Bot; 2010 Mar; 105(3):411-8. PubMed ID: 20089556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal and age-related variation in the needle quality of five conifer species.
    Hatcher PE
    Oecologia; 1990 Dec; 85(2):200-212. PubMed ID: 28312556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf functional response to increasing atmospheric CO(2) concentrations over the last century in two northern Amazonian tree species: a historical δ(13) C and δ(18) O approach using herbarium samples.
    Bonal D; Ponton S; Le Thiec D; Richard B; Ningre N; Hérault B; Ogée J; Gonzalez S; Pignal M; Sabatier D; Guehl JM
    Plant Cell Environ; 2011 Aug; 34(8):1332-44. PubMed ID: 21486302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A/C(i) curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance.
    Manter DK; Kerrigan J
    J Exp Bot; 2004 Dec; 55(408):2581-8. PubMed ID: 15501912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of stomatal density response to atmospheric CO2.
    Konrad W; Roth-Nebelsick A; Grein M
    J Theor Biol; 2008 Aug; 253(4):638-58. PubMed ID: 18538792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Century-scale shifts in early holocene atmospheric CO2 concentration.
    Wagner F; Bohncke SJ; Dilcher DL; Kurschner WM; van Geel B ; Visscher H
    Science; 1999 Jun; 284(5422):1971-3. PubMed ID: 10373111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the mesophyll in stomatal responses to light and CO2.
    Mott KA; Sibbernsen ED; Shope JC
    Plant Cell Environ; 2008 Sep; 31(9):1299-306. PubMed ID: 18541006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends in Stomatal Density and 13C/12C Ratios of Pinus flexilis Needles During Last Glacial-Interglacial Cycle.
    Van de Water PK; Leavitt SW; Betancourt JL
    Science; 1994 Apr; 264(5156):239-43. PubMed ID: 17749021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-insect secondary metabolites from fungal endophytes of conifer trees.
    Sumarah MW; Miller JD
    Nat Prod Commun; 2009 Nov; 4(11):1497-504. PubMed ID: 19967982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil.
    Millhollen AG; Obrist D; Gustin MS
    Chemosphere; 2006 Oct; 65(5):889-97. PubMed ID: 16631233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic responses of cottonwood seedlings grown in glacial through future atmospheric [CO2] vary with phosphorus supply.
    Tissue DT; Lewis JD
    Tree Physiol; 2010 Nov; 30(11):1361-72. PubMed ID: 20884610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.