BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21659593)

  • 1. Cell signaling. New mTOR targets Grb attention.
    Yea SS; Fruman DA
    Science; 2011 Jun; 332(6035):1270-1. PubMed ID: 21659593
    [No Abstract]   [Full Text] [Related]  

  • 2. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1.
    Liu M; Bai J; He S; Villarreal R; Hu D; Zhang C; Yang X; Liang H; Slaga TJ; Yu Y; Zhou Z; Blenis J; Scherer PE; Dong LQ; Liu F
    Cell Metab; 2014 Jun; 19(6):967-80. PubMed ID: 24746805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling.
    Yu Y; Yoon SO; Poulogiannis G; Yang Q; Ma XM; Villén J; Kubica N; Hoffman GR; Cantley LC; Gygi SP; Blenis J
    Science; 2011 Jun; 332(6035):1322-6. PubMed ID: 21659605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cutaneous T-cell lymphoma cells are sensitive to rapamycin.
    Kremer M; Sliva K; Klemke CD; Schnierle BS
    Exp Dermatol; 2010 Sep; 19(9):800-5. PubMed ID: 20629739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blocking the mTOR pathway: a drug discovery perspective.
    Garcia-Echeverria C
    Biochem Soc Trans; 2011 Apr; 39(2):451-5. PubMed ID: 21428918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mTOR partly mediates insulin resistance by phosphorylation of insulin receptor substrate-1 on serine(307) residues after burn.
    Xin-Long C; Zhao-Fan X; Dao-Feng B; Wei D
    Burns; 2011 Feb; 37(1):86-93. PubMed ID: 20594757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling.
    Hsu PP; Kang SA; Rameseder J; Zhang Y; Ottina KA; Lim D; Peterson TR; Choi Y; Gray NS; Yaffe MB; Marto JA; Sabatini DM
    Science; 2011 Jun; 332(6035):1317-22. PubMed ID: 21659604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway.
    Marzec M; Kasprzycka M; Liu X; El-Salem M; Halasa K; Raghunath PN; Bucki R; Wlodarski P; Wasik MA
    Oncogene; 2007 Aug; 26(38):5606-14. PubMed ID: 17353907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of mTOR inhibitors as therapeutic agents in hematological malignancies.
    Sankhala K; Giles FJ
    Expert Rev Hematol; 2009 Aug; 2(4):399-414. PubMed ID: 21082945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mTOR signaling, function, novel inhibitors, and therapeutic targets.
    Watanabe R; Wei L; Huang J
    J Nucl Med; 2011 Apr; 52(4):497-500. PubMed ID: 21421716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [mTOR inhibitor].
    Muro K
    Gan To Kagaku Ryoho; 2011 Jan; 38(1):7-11. PubMed ID: 21368454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer treatment.
    García-Echeverría C
    Bioorg Med Chem Lett; 2010 Aug; 20(15):4308-12. PubMed ID: 20561789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paronychia and pyogenic granuloma induced by new anticancer mTOR inhibitors.
    Sibaud V; Dalenc F; Mourey L; Chevreau C
    Acta Derm Venereol; 2011 Sep; 91(5):584-5. PubMed ID: 21667012
    [No Abstract]   [Full Text] [Related]  

  • 14. From node to pathway blockade: lessons learned from targeting mammalian target of rapamycin.
    Hidalgo M
    J Clin Oncol; 2012 Jan; 30(1):85-7. PubMed ID: 22067403
    [No Abstract]   [Full Text] [Related]  

  • 15. An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR.
    Hou G; Xue L; Lu Z; Fan T; Tian F; Xue Y
    Cancer Lett; 2007 Aug; 253(2):236-48. PubMed ID: 17360108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mTOR inhibitors show promising in vitro activity in bladder cancer and head and neck squamous cell carcinoma.
    Schedel F; Pries R; Thode B; Wollmann B; Wulff S; Jocham D; Wollenberg B; Kausch I
    Oncol Rep; 2011 Mar; 25(3):763-8. PubMed ID: 21240463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4-methylpteridinones as orally active and selective PI3K/mTOR dual inhibitors.
    Liu KK; Bagrodia S; Bailey S; Cheng H; Chen H; Gao L; Greasley S; Hoffman JE; Hu Q; Johnson TO; Knighton D; Liu Z; Marx MA; Nambu MD; Ninkovic S; Pascual B; Rafidi K; Rodgers CM; Smith GL; Sun S; Wang H; Yang A; Yuan J; Zou A
    Bioorg Med Chem Lett; 2010 Oct; 20(20):6096-9. PubMed ID: 20817449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curcumin inhibits carcinogen and nicotine-induced Mammalian target of rapamycin pathway activation in head and neck squamous cell carcinoma.
    Clark CA; McEachern MD; Shah SH; Rong Y; Rong X; Smelley CL; Caldito GC; Abreo FW; Nathan CO
    Cancer Prev Res (Phila); 2010 Dec; 3(12):1586-95. PubMed ID: 20851953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The paradox of sirolimus-induced immunosuppression and tumor control.
    Stucki L; Piguet V
    Dermatology; 2006; 213(1):3-5. PubMed ID: 16778418
    [No Abstract]   [Full Text] [Related]  

  • 20. Mammalian target of rapamycin signaling activation patterns in neuroendocrine tumors of the lung.
    Righi L; Volante M; Rapa I; Tavaglione V; Inzani F; Pelosi G; Papotti M
    Endocr Relat Cancer; 2010 Dec; 17(4):977-87. PubMed ID: 20817788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.