These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 21659759)

  • 41. Effect of diabetes and aminoguanidine therapy on renal advanced glycation end-product binding.
    Youssef S; Nguyen DT; Soulis T; Panagiotopoulos S; Jerums G; Cooper ME
    Kidney Int; 1999 Mar; 55(3):907-16. PubMed ID: 10027927
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunohistochemical detection of advanced glycosylation end products within the vascular lesions and glomeruli in diabetic nephropathy.
    Nishino T; Horii Y; Shiiki H; Yamamoto H; Makita Z; Bucala R; Dohi K
    Hum Pathol; 1995 Mar; 26(3):308-13. PubMed ID: 7890283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The role of advanced glycation end-products (AGEs) in the development of vascular diabetic complications].
    Barbosa JH; Oliveira SL; Seara LT
    Arq Bras Endocrinol Metabol; 2008 Aug; 52(6):940-50. PubMed ID: 18820805
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Do MH; Hur J; Choi J; Kim Y; Park HY; Ha SK
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30223524
    [No Abstract]   [Full Text] [Related]  

  • 45. Hypoxia in the diabetic kidney is independent of advanced glycation end-products.
    Nordquist L; Liss P; Fasching A; Hansell P; Palm F
    Adv Exp Med Biol; 2013; 765():185-193. PubMed ID: 22879032
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The pleiotropic actions of rosuvastatin confer renal benefits in the diabetic Apo-E knockout mouse.
    Giunti S; Calkin AC; Forbes JM; Allen TJ; Thomas MC; Cooper ME; Jandeleit-Dahm KA
    Am J Physiol Renal Physiol; 2010 Sep; 299(3):F528-35. PubMed ID: 20554645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats.
    Boor P; Celec P; Behuliak M; Grancic P; Kebis A; Kukan M; Pronayová N; Liptaj T; Ostendorf T; Sebeková K
    Metabolism; 2009 Nov; 58(11):1669-77. PubMed ID: 19608208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GS-E3D, a new pectin lyase-modified red ginseng extract, inhibited diabetes-related renal dysfunction in streptozotocin-induced diabetic rats.
    Kim CS; Jo K; Kim JS; Pyo MK; Kim J
    BMC Complement Altern Med; 2017 Aug; 17(1):430. PubMed ID: 28851327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling.
    Liu J; Huang K; Cai GY; Chen XM; Yang JR; Lin LR; Yang J; Huo BG; Zhan J; He YN
    Cell Signal; 2014 Jan; 26(1):110-21. PubMed ID: 24113348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decoding the role of aldosterone in glycation-induced diabetic complications.
    Apte M; Zambre S; Pisar P; Roy B; Tupe R
    Biochem Biophys Res Commun; 2024 Aug; 721():150107. PubMed ID: 38781658
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Autophagy Inhibits the Accumulation of Advanced Glycation End Products by Promoting Lysosomal Biogenesis and Function in the Kidney Proximal Tubules.
    Takahashi A; Takabatake Y; Kimura T; Maejima I; Namba T; Yamamoto T; Matsuda J; Minami S; Kaimori JY; Matsui I; Matsusaka T; Niimura F; Yoshimori T; Isaka Y
    Diabetes; 2017 May; 66(5):1359-1372. PubMed ID: 28246295
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advanced glycation end products (AGEs) and diabetic vascular complications.
    Yamagishi S; Nakamura K; Imaizumi T
    Curr Diabetes Rev; 2005 Feb; 1(1):93-106. PubMed ID: 18220586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diabetes and advanced glycation endproducts.
    Vlassara H; Palace MR
    J Intern Med; 2002 Feb; 251(2):87-101. PubMed ID: 11905595
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hyperglycemia and the pathobiology of diabetic complications.
    Aronson D
    Adv Cardiol; 2008; 45():1-16. PubMed ID: 18230953
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From molecular footprints of disease to new therapeutic interventions in diabetic nephropathy.
    Miyata T; Yamamoto M; Izuhara Y
    Ann N Y Acad Sci; 2005 Jun; 1043():740-9. PubMed ID: 16037301
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diabetic tubulopathy: an emerging entity.
    Tang SCW; Leung JCK; Lai KN
    Contrib Nephrol; 2011; 170():124-134. PubMed ID: 21659765
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advanced glycation end-products in diabetic nephropathy.
    Friedman EA
    Nephrol Dial Transplant; 1999; 14 Suppl 3():1-9. PubMed ID: 10382974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pigment epithelium-derived factor (PEDF) inhibits proximal tubular cell injury in early diabetic nephropathy by suppressing advanced glycation end products (AGEs)-receptor (RAGE) axis.
    Maeda S; Matsui T; Takeuchi M; Yoshida Y; Yamakawa R; Fukami K; Yamagishi S
    Pharmacol Res; 2011 Mar; 63(3):241-8. PubMed ID: 21115116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteomic analysis of glycated proteins from streptozotocin-induced diabetic rat kidney.
    Chougale AD; Bhat SP; Bhujbal SV; Zambare MR; Puntambekar S; Somani RS; Boppana R; Giri AP; Kulkarni MJ
    Mol Biotechnol; 2012 Jan; 50(1):28-38. PubMed ID: 21516357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advanced glycation end-products and the kidney.
    Busch M; Franke S; Rüster C; Wolf G
    Eur J Clin Invest; 2010 Aug; 40(8):742-55. PubMed ID: 20649640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.