These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 21660099)

  • 21. Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells.
    Miyamoto Y; Katayama S; Shigematsu N; Nishi A; Fukuda T
    Brain Struct Funct; 2018 Dec; 223(9):4275-4291. PubMed ID: 30203304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-phase model of the basal ganglia: implications for discontinuous control of the motor system.
    Lisman J
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1655):. PubMed ID: 25267829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis.
    Frank MJ; Badre D
    Cereb Cortex; 2012 Mar; 22(3):509-26. PubMed ID: 21693490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Output architecture of the primate putamen.
    Flaherty AW; Graybiel AM
    J Neurosci; 1993 Aug; 13(8):3222-37. PubMed ID: 7688037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of striatal action selection and reinforcement learning.
    Lindsey J; Markowitz JE; Datta SR; Litwin-Kumar A
    bioRxiv; 2024 Feb; ():. PubMed ID: 38464083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Input-output organization of the sensorimotor striatum in the squirrel monkey.
    Flaherty AW; Graybiel AM
    J Neurosci; 1994 Feb; 14(2):599-610. PubMed ID: 7507981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mosaic architecture of the somatic sensory-recipient sector of the cat's striatum.
    Malach R; Graybiel AM
    J Neurosci; 1986 Dec; 6(12):3436-58. PubMed ID: 3794782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing reinforcement learning models by including direct and indirect pathways improves performance on striatal dependent tasks.
    Blackwell KT; Doya K
    PLoS Comput Biol; 2023 Aug; 19(8):e1011385. PubMed ID: 37594982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Basal Ganglia-A Motion Perspective.
    Grillner S; Robertson B; Kotaleski JH
    Compr Physiol; 2020 Sep; 10(4):1241-1275. PubMed ID: 32969510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine.
    Morita K; Kawaguchi Y
    Front Neural Circuits; 2018; 12():111. PubMed ID: 30687019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
    Wickens JR; Budd CS; Hyland BI; Arbuthnott GW
    Ann N Y Acad Sci; 2007 May; 1104():192-212. PubMed ID: 17416920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian-Bayesian Go-NoGo connectivity.
    Berthet P; Hellgren-Kotaleski J; Lansner A
    Front Behav Neurosci; 2012; 6():65. PubMed ID: 23060764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hippocampal Contribution to Probabilistic Feedback Learning: Modeling Observation- and Reinforcement-based Processes.
    Patt VM; Palombo DJ; Esterman M; Verfaellie M
    J Cogn Neurosci; 2022 Jul; 34(8):1429-1446. PubMed ID: 35604353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motivational neural circuits underlying reinforcement learning.
    Averbeck BB; Costa VD
    Nat Neurosci; 2017 Mar; 20(4):505-512. PubMed ID: 28352111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From learning to action: the integration of dorsal striatal input and output pathways in instrumental conditioning.
    Peak J; Hart G; Balleine BW
    Eur J Neurosci; 2019 Mar; 49(5):658-671. PubMed ID: 29791051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the normative advantages of dopamine and striatal opponency for learning and choice.
    Jaskir A; Frank MJ
    Elife; 2023 Mar; 12():. PubMed ID: 36946371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey.
    Eblen F; Graybiel AM
    J Neurosci; 1995 Sep; 15(9):5999-6013. PubMed ID: 7666184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inter-module credit assignment in modular reinforcement learning.
    Samejima K; Doya K; Kawato M
    Neural Netw; 2003 Sep; 16(7):985-94. PubMed ID: 14692633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parsing Heterogeneous Striatal Activity.
    Nakamura K; Ding L
    Front Neuroanat; 2017; 11():43. PubMed ID: 28559801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.