These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 21660099)

  • 41. Inter-module credit assignment in modular reinforcement learning.
    Samejima K; Doya K; Kawato M
    Neural Netw; 2003 Sep; 16(7):985-94. PubMed ID: 14692633
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Parsing Heterogeneous Striatal Activity.
    Nakamura K; Ding L
    Front Neuroanat; 2017; 11():43. PubMed ID: 28559801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum.
    Joel D; Weiner I
    Neuroscience; 2000; 96(3):451-74. PubMed ID: 10717427
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predominant Striatal Input to the Lateral Habenula in Macaques Comes from Striosomes.
    Hong S; Amemori S; Chung E; Gibson DJ; Amemori KI; Graybiel AM
    Curr Biol; 2019 Jan; 29(1):51-61.e5. PubMed ID: 30554903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unbalanced fronto-pallidal neurocircuit underlying set shifting in obsessive-compulsive disorder.
    Kim T; Kim M; Jung WH; Kwak YB; Moon SY; Kyungjin Lho S; Lee J; Kwon JS
    Brain; 2022 Apr; 145(3):979-990. PubMed ID: 35484084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural circuit mechanism for learning dependent on dopamine transmission: roles of striatal direct and indirect pathways in sensory discrimination.
    Kobayashi K; Fukabori R; Nishizawa K
    Adv Pharmacol; 2013; 68():143-53. PubMed ID: 24054143
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions.
    Fee MS
    Front Neural Circuits; 2012; 6():38. PubMed ID: 22754501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Radial Glial Lineage Progression and Differential Intermediate Progenitor Amplification Underlie Striatal Compartments and Circuit Organization.
    Kelly SM; Raudales R; He M; Lee JH; Kim Y; Gibb LG; Wu P; Matho K; Osten P; Graybiel AM; Huang ZJ
    Neuron; 2018 Jul; 99(2):345-361.e4. PubMed ID: 30017396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum.
    Hagimoto K; Takami S; Murakami F; Tanabe Y
    J Comp Neurol; 2017 Mar; 525(4):794-817. PubMed ID: 27532901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The many worlds hypothesis of dopamine prediction error: implications of a parallel circuit architecture in the basal ganglia.
    Lau B; Monteiro T; Paton JJ
    Curr Opin Neurobiol; 2017 Oct; 46():241-247. PubMed ID: 28985550
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional circuitry of the avian basal ganglia: implications for basal ganglia organization in stem amniotes.
    Reiner A
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):513-28. PubMed ID: 11923021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses.
    Bloem B; Huda R; Sur M; Graybiel AM
    Elife; 2017 Dec; 6():. PubMed ID: 29251596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DARPP-32 cells and neuropil define striosomal system and isolated matrix cells in human striatum.
    Arasaratnam CJ; Song JJ; Yoshida T; Curtis MA; Graybiel AM; Faull RLM; Waldvogel HJ
    J Comp Neurol; 2023 Jun; 531(8):888-920. PubMed ID: 37002560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substance P Weights Striatal Dopamine Transmission Differently within the Striosome-Matrix Axis.
    Brimblecombe KR; Cragg SJ
    J Neurosci; 2015 Jun; 35(24):9017-23. PubMed ID: 26085627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thalamostriatal projections and striosome-matrix compartments.
    Fujiyama F; Unzai T; Karube F
    Neurochem Int; 2019 May; 125():67-73. PubMed ID: 30710558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Response of striosomal opioid signaling to dopamine depletion in 6-hydroxydopamine-lesioned rat model of Parkinson's disease: a potential compensatory role.
    Koizumi H; Morigaki R; Okita S; Nagahiro S; Kaji R; Nakagawa M; Goto S
    Front Cell Neurosci; 2013; 7():74. PubMed ID: 23730270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of the intrinsic cholinergic system of the striatum: What have we learned from TAN recordings in behaving animals?
    Apicella P
    Neuroscience; 2017 Sep; 360():81-94. PubMed ID: 28768155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning.
    Franklin NT; Frank MJ
    Elife; 2015 Dec; 4():. PubMed ID: 26705698
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events.
    Yamanaka K; Hori Y; Minamimoto T; Yamada H; Matsumoto N; Enomoto K; Aosaki T; Graybiel AM; Kimura M
    J Neural Transm (Vienna); 2018 Mar; 125(3):501-513. PubMed ID: 28324169
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement.
    Xiao X; Deng H; Furlan A; Yang T; Zhang X; Hwang GR; Tucciarone J; Wu P; He M; Palaniswamy R; Ramakrishnan C; Ritola K; Hantman A; Deisseroth K; Osten P; Huang ZJ; Li B
    Cell; 2020 Oct; 183(1):211-227.e20. PubMed ID: 32937106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.