These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 21660139)
21. Surface antigens of Xenorhabdus nematophila (F. Enterobacteriaceae) and Bacillus subtilis (F. Bacillaceae) react with antibacterial factors of Malacosoma disstria (C. Insecta: O. Lepidoptera) hemolymph. Giannoulis P; Brooks CL; Dunphy GB; Niven DF; Mandato CA J Invertebr Pathol; 2008 Mar; 97(3):211-22. PubMed ID: 18048054 [TBL] [Abstract][Full Text] [Related]
22. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila. Eom S; Park Y; Kim Y J Microbiol; 2014 Feb; 52(2):161-8. PubMed ID: 24500481 [TBL] [Abstract][Full Text] [Related]
23. Xenorhabdus antibiotics: a comparative analysis and potential utility for controlling mastitis caused by bacteria. Furgani G; Böszörményi E; Fodor A; Máthé-Fodor A; Forst S; Hogan JS; Katona Z; Klein MG; Stackebrandt E; Szentirmai A; Sztaricskai F; Wolf SL J Appl Microbiol; 2008 Mar; 104(3):745-58. PubMed ID: 17976177 [TBL] [Abstract][Full Text] [Related]
24. Enhancing xanthine oxidase fermentation with pH-shift strategy based on kinetic analysis by Arthrobacter M3. Zhang Y; Yang H; Xin Y; Zhang L; Wang W Bioprocess Biosyst Eng; 2014 Sep; 37(9):1899-905. PubMed ID: 24623465 [TBL] [Abstract][Full Text] [Related]
25. Expression and characterization of two chitinases with synergistic effect and antifungal activity from Xenorhabdus nematophila. Liu J; NanGong Z; Zhang J; Song P; Tang Y; Gao Y; Wang Q World J Microbiol Biotechnol; 2019 Jul; 35(7):106. PubMed ID: 31267229 [TBL] [Abstract][Full Text] [Related]
26. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Park D; Ciezki K; van der Hoeven R; Singh S; Reimer D; Bode HB; Forst S Mol Microbiol; 2009 Sep; 73(5):938-49. PubMed ID: 19682255 [TBL] [Abstract][Full Text] [Related]
27. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. Eom S; Park Y; Kim H; Kim Y J Microbiol Biotechnol; 2014 Apr; 24(4):507-21. PubMed ID: 24394195 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the pixB gene in Xenorhabdus nematophila and discovery of a new gene family. Lucas J; Goetsch M; Fischer M; Forst S Microbiology (Reading); 2018 Apr; 164(4):495-508. PubMed ID: 29498622 [TBL] [Abstract][Full Text] [Related]
29. High Levels of the Xenorhabdus nematophila Transcription Factor Lrp Promote Mutualism with the Steinernema carpocapsae Nematode Host. Cao M; Patel T; Rickman T; Goodrich-Blair H; Hussa EA Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389546 [No Abstract] [Full Text] [Related]
30. Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. Martens EC; Heungens K; Goodrich-Blair H J Bacteriol; 2003 May; 185(10):3147-54. PubMed ID: 12730175 [TBL] [Abstract][Full Text] [Related]
31. Analysis of Xenorhabdus nematophila metabolic mutants yields insight into stages of Steinernema carpocapsae nematode intestinal colonization. Martens EC; Russell FM; Goodrich-Blair H Mol Microbiol; 2005 Oct; 58(1):28-45. PubMed ID: 16164547 [TBL] [Abstract][Full Text] [Related]
32. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase A2 (PLA2) in tobacco hornworms Manduca sexta. Park Y; Kim Y; Tunaz H; Stanley DW J Invertebr Pathol; 2004 Jul; 86(3):65-71. PubMed ID: 15261769 [TBL] [Abstract][Full Text] [Related]
33. Physiological Constants of the Entomopathogenic Bacterium Xenorhabdus nematophila Determined by Microbial Growth Kinetics. Kooliyottil R; Inman F; Mandjiny S; Holmes L ISRN Microbiol; 2014; 2014():834054. PubMed ID: 24944838 [TBL] [Abstract][Full Text] [Related]
34. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy. Zhu BF; Xu Y J Ind Microbiol Biotechnol; 2010 Aug; 37(8):815-21. PubMed ID: 20437078 [TBL] [Abstract][Full Text] [Related]
35. Nematophin, an Antimicrobial Dipeptide Compound From Zhang S; Liu Q; Han Y; Han J; Yan Z; Wang Y; Zhang X Front Microbiol; 2019; 10():1765. PubMed ID: 31440217 [TBL] [Abstract][Full Text] [Related]
36. CpxRA regulates mutualism and pathogenesis in Xenorhabdus nematophila. Herbert EE; Cowles KN; Goodrich-Blair H Appl Environ Microbiol; 2007 Dec; 73(24):7826-36. PubMed ID: 17951441 [TBL] [Abstract][Full Text] [Related]
37. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Richards GR; Goodrich-Blair H Cell Microbiol; 2009 Jul; 11(7):1025-33. PubMed ID: 19374654 [TBL] [Abstract][Full Text] [Related]
38. Variation in pathogenicity of different strains of Xenorhabdus nematophila; Differential immunosuppressive activities and secondary metabolite production. Hasan MA; Ahmed S; Mollah MMI; Lee D; Kim Y J Invertebr Pathol; 2019 Sep; 166():107221. PubMed ID: 31356819 [TBL] [Abstract][Full Text] [Related]
39. Antimicrobial activity of Xenorhabdus sp. RIO (Enterobacteriaceae), symbiont of the entomopathogenic nematode, Steinernema riobrave (Rhabditida: Steinernematidae). Isaacson PJ; Webster JM J Invertebr Pathol; 2002 Mar; 79(3):146-53. PubMed ID: 12133703 [TBL] [Abstract][Full Text] [Related]