These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 21660139)
41. Application of toxins from the entomopathogenic bacterium, Xenorhabdus nematophila, for the control of insects on foliage. Mahar AN; Al-Siyabi AA; Elawad SA; Hague NG; Gowen SR Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):233-8. PubMed ID: 17390798 [TBL] [Abstract][Full Text] [Related]
42. Kinetic analysis and pH-shift control strategy for propionic acid production with Propionibacterium Freudenreichii CCTCC M207015. Feng X; Xu H; Yao J; Li S; Zhu H; Ouyang P Appl Biochem Biotechnol; 2010 Jan; 160(2):343-9. PubMed ID: 18626579 [TBL] [Abstract][Full Text] [Related]
43. Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy. Li X; Lin Y; Chang M; Jin Q; Wang X Bioresour Technol; 2015 Apr; 181():275-82. PubMed ID: 25661306 [TBL] [Abstract][Full Text] [Related]
44. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae). Eroglu C; Cimen H; Ulug D; Karagoz M; Hazir S; Cakmak I J Invertebr Pathol; 2019 Jan; 160():61-66. PubMed ID: 30528928 [TBL] [Abstract][Full Text] [Related]
45. Type 1 fimbriae of insecticidal bacterium Xenorhabdus nematophila is necessary for growth and colonization of its symbiotic host nematode Steinernema carpocapsiae. Chandra H; Khandelwal P; Khattri A; Banerjee N Environ Microbiol; 2008 May; 10(5):1285-95. PubMed ID: 18279345 [TBL] [Abstract][Full Text] [Related]
46. Biosynthesis of the Antibiotic Nematophin and Its Elongated Derivatives in Entomopathogenic Bacteria. Cai X; Challinor VL; Zhao L; Reimer D; Adihou H; Grün P; Kaiser M; Bode HB Org Lett; 2017 Feb; 19(4):806-809. PubMed ID: 28134534 [TBL] [Abstract][Full Text] [Related]
47. PirAB protein from Xenorhabdus nematophila HB310 exhibits a binary toxin with insecticidal activity and cytotoxicity in Galleria mellonella. Yang Q; Zhang J; Li T; Liu S; Song P; Nangong Z; Wang Q J Invertebr Pathol; 2017 Sep; 148():43-50. PubMed ID: 28438456 [TBL] [Abstract][Full Text] [Related]
48. Unique organization and regulation of the mrx fimbrial operon in Xenorhabdus nematophila. He H; Snyder HA; Forst S Microbiology (Reading); 2004 May; 150(Pt 5):1439-1446. PubMed ID: 15133105 [TBL] [Abstract][Full Text] [Related]
49. The Xenorhabdus nematophila nilABC genes confer the ability of Xenorhabdus spp. to colonize Steinernema carpocapsae nematodes. Cowles CE; Goodrich-Blair H J Bacteriol; 2008 Jun; 190(12):4121-8. PubMed ID: 18390667 [TBL] [Abstract][Full Text] [Related]
50. The pH shift and precursor feeding strategy in a low-toxicity FR-008/candicidin derivative CS103 fermentation bioprocess by a mutant of Streptomyces sp. FR-008. Mao X; Wang F; Zhang J; Chen S; Deng Z; Shen Y; Wei D Appl Biochem Biotechnol; 2009 Dec; 159(3):673-86. PubMed ID: 19148776 [TBL] [Abstract][Full Text] [Related]
52. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. Ji D; Yi Y; Kang GH; Choi YH; Kim P; Baek NI; Kim Y FEMS Microbiol Lett; 2004 Oct; 239(2):241-8. PubMed ID: 15476972 [TBL] [Abstract][Full Text] [Related]
53. Production of cyclic adenosine monophosphate by Arthrobacter sp. A302 using fed-batch fermentation with pH-shift control. Cao J; Chen X; Ren H; Zhang J; Li L; Chen Y; Xiong J; Bai J; Ying H World J Microbiol Biotechnol; 2012 Jan; 28(1):121-7. PubMed ID: 22806787 [TBL] [Abstract][Full Text] [Related]
54. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). Jung SC; Kim YG J Econ Entomol; 2007 Feb; 100(1):246-50. PubMed ID: 17370835 [TBL] [Abstract][Full Text] [Related]
55. The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cowles KN; Cowles CE; Richards GR; Martens EC; Goodrich-Blair H Cell Microbiol; 2007 May; 9(5):1311-23. PubMed ID: 17223926 [TBL] [Abstract][Full Text] [Related]
56. Identification of Arylphorin interacting with the insecticidal protein PirAB from Xenorhabdus nematophila by yeast two-hybrid system. NanGong Z; Guo X; Yang Q; Song P; Wang Q; Parajulee MN World J Microbiol Biotechnol; 2020 Mar; 36(4):56. PubMed ID: 32211973 [TBL] [Abstract][Full Text] [Related]
57. Transcriptional analysis and functional characterization of a gene pair encoding iron-regulated xenocin and immunity proteins of Xenorhabdus nematophila. Singh J; Banerjee N J Bacteriol; 2008 Jun; 190(11):3877-85. PubMed ID: 18375563 [TBL] [Abstract][Full Text] [Related]
58. An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and Imd pathways by blocking eicosanoid biosynthesis. Hwang J; Park Y; Kim Y; Hwang J; Lee D Arch Insect Biochem Physiol; 2013 Jul; 83(3):151-69. PubMed ID: 23740621 [TBL] [Abstract][Full Text] [Related]
59. New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae. Snyder H; Stock SP; Kim SK; Flores-Lara Y; Forst S Appl Environ Microbiol; 2007 Aug; 73(16):5338-46. PubMed ID: 17526783 [TBL] [Abstract][Full Text] [Related]
60. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A(2). Shrestha S; Kim Y J Invertebr Pathol; 2007 Sep; 96(1):64-70. PubMed ID: 17395196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]