BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21660322)

  • 1. Photoselective excited state dynamics in ZnO-Au nanocomposites and their implications in photocatalysis and dye-sensitized solar cells.
    Sarkar S; Makhal A; Bora T; Baruah S; Dutta J; Pal SK
    Phys Chem Chem Phys; 2011 Jul; 13(27):12488-96. PubMed ID: 21660322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process.
    Bora T; Kyaw HH; Sarkar S; Pal SK; Dutta J
    Beilstein J Nanotechnol; 2011; 2():681-90. PubMed ID: 22043457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state dye-sensitized solar cells based on ZnO nanocrystals.
    Boucharef M; Di Bin C; Boumaza MS; Colas M; Snaith HJ; Ratier B; Bouclé J
    Nanotechnology; 2010 May; 21(20):205203. PubMed ID: 20418608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient plasmonic dye-sensitized solar cells with fluorescent Au-encapsulated C-dots.
    Narayanan R; Deepa M; Srivastava AK; Shivaprasad SM
    Chemphyschem; 2014 Apr; 15(6):1106-15. PubMed ID: 24677662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Built-in quantum dot antennas in dye-sensitized solar cells.
    Buhbut S; Itzhakov S; Tauber E; Shalom M; Hod I; Geiger T; Garini Y; Oron D; Zaban A
    ACS Nano; 2010 Mar; 4(3):1293-8. PubMed ID: 20155968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration.
    Subramanian V; Wolf EE; Kamat PV
    J Am Chem Soc; 2004 Apr; 126(15):4943-50. PubMed ID: 15080700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances.
    Labat F; Ciofini I; Hratchian HP; Frisch M; Raghavachari K; Adamo C
    J Am Chem Soc; 2009 Oct; 131(40):14290-8. PubMed ID: 19761184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited state nature at the dye/semiconductor interface.
    Amat A; De Angelis F
    Phys Chem Chem Phys; 2012 Aug; 14(30):10662-8. PubMed ID: 22743544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient synthetic access to cationic dendrons and their application for ZnO nanoparticles surface functionalization: new building blocks for dye-sensitized solar cells.
    Gnichwitz JF; Marczak R; Werner F; Lang N; Jux N; Guldi DM; Peukert W; Hirsch A
    J Am Chem Soc; 2010 Dec; 132(50):17910-20. PubMed ID: 21121664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-scale interface engineering of metal nanoparticles for plasmon-enhanced dye sensitized solar cells.
    Lou Y; Yuan S; Zhao Y; Hu P; Wang Z; Zhang M; Shi L; Li D
    Dalton Trans; 2013 Apr; 42(15):5330-7. PubMed ID: 23407603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of aggregation and electron injection on photovoltaic performance of porphyrin-based solar cells with oligo(phenylethynyl) links inside TiO(2) and Al(2)O(3) nanotube arrays.
    Luo L; Lin CJ; Tsai CY; Wu HP; Li LL; Lo CF; Lin CY; Diau EW
    Phys Chem Chem Phys; 2010 Feb; 12(5):1064-71. PubMed ID: 20094671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of light harvesting in ZnO nanoparticles.
    Makhal A; Sarkar S; Bora T; Baruah S; Dutta J; Raychaudhuri AK; Pal SK
    Nanotechnology; 2010 Jul; 21(26):265703. PubMed ID: 20522931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High efficiency dye-sensitized solar cells exploiting sponge-like ZnO nanostructures.
    Sacco A; Lamberti A; Gazia R; Bianco S; Manfredi D; Shahzad N; Cappelluti F; Ma S; Tresso E
    Phys Chem Chem Phys; 2012 Dec; 14(47):16203-8. PubMed ID: 23001064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells.
    Choi H; Chen WT; Kamat PV
    ACS Nano; 2012 May; 6(5):4418-27. PubMed ID: 22494109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application.
    Abd-Ellah M; Moghimi N; Zhang L; Thomas JP; McGillivray D; Srivastava S; Leung KT
    Nanoscale; 2016 Jan; 8(3):1658-64. PubMed ID: 26690257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.
    Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR
    J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.