BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21660322)

  • 21. Photophysical studies of dipolar organic dyes that feature a 1,3-cyclohexadiene conjugated linkage: the implication of a twisted intramolecular charge-transfer state on the efficiency of dye-sensitized solar cells.
    Chen KF; Chang CW; Lin JL; Hsu YC; Yeh MC; Hsu CP; Sun SS
    Chemistry; 2010 Nov; 16(43):12873-82. PubMed ID: 20886474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale connectivity in a TiO2/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance.
    Narayanan R; Deepa M; Srivastava AK
    Phys Chem Chem Phys; 2012 Jan; 14(2):767-78. PubMed ID: 22108634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles.
    Kochuveedu ST; Oh JH; Do YR; Kim DH
    Chemistry; 2012 Jun; 18(24):7467-72. PubMed ID: 22555776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visible to near-infrared light harvesting in Ag2S nanoparticles/ZnO nanowire array photoanodes.
    Wu JJ; Chang RC; Chen DW; Wu CT
    Nanoscale; 2012 Feb; 4(4):1368-72. PubMed ID: 22278401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitization of an endogenous photosensitizer: electronic spectroscopy of riboflavin in the proximity of semiconductor, insulator, and metal nanoparticles.
    Chaudhuri S; Sardar S; Bagchi D; Singha SS; Lemmens P; Pal SK
    J Phys Chem A; 2015 May; 119(18):4162-9. PubMed ID: 25871406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective visible-excited charge separation in silicate-bridged ZnO/BiVO4 nanocomposite and its contribution to enhanced photocatalytic activity.
    Fu X; Xie M; Luan P; Jing L
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18550-7. PubMed ID: 25307024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells.
    Koops SE; O'Regan BC; Barnes PR; Durrant JR
    J Am Chem Soc; 2009 Apr; 131(13):4808-18. PubMed ID: 19334776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.
    Zhang X; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical metal/semiconductor nanostructure for efficient water splitting.
    Thiyagarajan P; Ahn HJ; Lee JS; Yoon JC; Jang JH
    Small; 2013 Jul; 9(13):2341-7. PubMed ID: 23292824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells.
    Beek WJ; Wienk MM; Kemerink M; Yang X; Janssen RA
    J Phys Chem B; 2005 May; 109(19):9505-16. PubMed ID: 16852143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mg(OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells.
    Gao R; Wang L; Ma B; Zhan C; Qiu Y
    Langmuir; 2010 Feb; 26(4):2460-5. PubMed ID: 19856906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures.
    Dana J; Maity P; Ghosh HN
    Nanoscale; 2017 Jul; 9(27):9723-9731. PubMed ID: 28675235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organic polyaromatic hydrocarbons as sensitizing model dyes for semiconductor nanoparticles.
    Zhang Y; Galoppini E
    ChemSusChem; 2010 Apr; 3(4):410-28. PubMed ID: 20135672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomistic mechanism of charge separation upon photoexcitation at the dye-semiconductor interface for photovoltaic applications.
    Jiao Y; Ding Z; Meng S
    Phys Chem Chem Phys; 2011 Aug; 13(29):13196-201. PubMed ID: 21709923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT:PCBM/ZnO nanorod array hybrid solar cells.
    Wang TC; Su YH; Hung YK; Yeh CS; Huang LW; Gomulya W; Lai LH; Loi MA; Yang JS; Wu JJ
    Phys Chem Chem Phys; 2015 Aug; 17(30):19854-61. PubMed ID: 26159896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron mobility and injection dynamics in mesoporous ZnO, SnO₂, and TiO₂ films used in dye-sensitized solar cells.
    Tiwana P; Docampo P; Johnston MB; Snaith HJ; Herz LM
    ACS Nano; 2011 Jun; 5(6):5158-66. PubMed ID: 21595483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.
    Odobel F; Le Pleux L; Pellegrin Y; Blart E
    Acc Chem Res; 2010 Aug; 43(8):1063-71. PubMed ID: 20455541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.