These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21660322)

  • 41. Detailed investigations of ZnO photoelectrodes preparation for dye sensitized solar cells.
    Marczak R; Werner F; Ahmad R; Lobaz V; Guldi DM; Peukert W
    Langmuir; 2011 Apr; 27(7):3920-9. PubMed ID: 21395277
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A study into the role of surface capping on energy transfer in metal cluster-semiconductor nanocomposites.
    Bain D; Paramanik B; Sadhu S; Patra A
    Nanoscale; 2015 Dec; 7(48):20697-708. PubMed ID: 26603192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis.
    Zeng H; Cai W; Liu P; Xu X; Zhou H; Klingshirn C; Kalt H
    ACS Nano; 2008 Aug; 2(8):1661-70. PubMed ID: 19206370
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis.
    Sun Y; Sun Y; Zhang T; Chen G; Zhang F; Liu D; Cai W; Li Y; Yang X; Li C
    Nanoscale; 2016 May; 8(20):10774-82. PubMed ID: 27160795
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of graphenized Au/ZnO plasmonic nanocomposites for simultaneous sunlight mediated photo-catalysis and anti-microbial activity.
    Juneja S; Madhavan AA; Ghosal A; Ghosh Moulick R; Bhattacharya J
    J Hazard Mater; 2018 Apr; 347():378-389. PubMed ID: 29407847
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasmonic metal-to-semiconductor switching in Au nanorod-ZnO nanocomposite films.
    Wu F; Tian L; Kanjolia R; Singamaneni S; Banerjee P
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7693-7. PubMed ID: 23910640
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions.
    Ko KH; Lee YC; Jung YJ
    J Colloid Interface Sci; 2005 Mar; 283(2):482-7. PubMed ID: 15721923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide.
    Williams G; Kamat PV
    Langmuir; 2009 Dec; 25(24):13869-73. PubMed ID: 19453127
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamics of the photoexcited electron at the chromophore-semiconductor interface.
    Prezhdo OV; Duncan WR; Prezhdo VV
    Acc Chem Res; 2008 Feb; 41(2):339-48. PubMed ID: 18281950
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods.
    Bora T; Zoepfl D; Dutta J
    Sci Rep; 2016 May; 6():26913. PubMed ID: 27242172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrafast dynamics in co-sensitized photocatalysts under visible and NIR light irradiation.
    Patwari J; Chatterjee A; Sardar S; Lemmens P; Pal SK
    Phys Chem Chem Phys; 2018 Apr; 20(15):10418-10429. PubMed ID: 29611559
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Room temperature enhanced red emission from novel Eu(3+) doped ZnO nanocrystals uniformly dispersed in nanofibers.
    Zhang Y; Liu Y; Li X; Wang QJ; Xie E
    Nanotechnology; 2011 Oct; 22(41):415702. PubMed ID: 21914938
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SnO₂(β-Bi₂O₃)/Bi₂Sn₂O₇ nanohybrids doped with Pt and Pd nanoparticles: applications in visible light photocatalysis, electrical conductivity and dye-sensitized solar cells.
    Khairy M; Mohamed MM
    Phys Chem Chem Phys; 2015 Sep; 17(33):21716-28. PubMed ID: 26234250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of surface etching on the efficiency of ZnO-based dye-sensitized solar cells.
    Yan F; Huang L; Zheng J; Huang J; Lin Z; Huang F; Wei M
    Langmuir; 2010 May; 26(10):7153-6. PubMed ID: 20112927
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-efficiency, solid-state, dye-sensitized solar cells using hierarchically structured TiO₂ nanofibers.
    Hwang D; Jo SM; Kim DY; Armel V; MacFarlane DR; Jang SY
    ACS Appl Mater Interfaces; 2011 May; 3(5):1521-7. PubMed ID: 21452819
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells.
    Chen W; Qiu Y; Yang S
    Phys Chem Chem Phys; 2010 Aug; 12(32):9494-501. PubMed ID: 20607161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-assembled gold nanoparticle-mixed metal oxide nanocomposites for self-sensitized dye degradation under visible light irradiation.
    Cho S; Jang JW; Hwang S; Lee JS; Kim S
    Langmuir; 2012 Dec; 28(50):17530-6. PubMed ID: 23186248
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells.
    Hoke ET; Hardin BE; McGehee MD
    Opt Express; 2010 Feb; 18(4):3893-904. PubMed ID: 20389400
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes.
    Lee WJ; Ramasamy E; Lee DY; Song JS
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1145-9. PubMed ID: 20355903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.