These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 21660335)
1. Carbon nanospheres for highly sensitive electrochemical detection of sequence-specific protein-DNA interactions. He X; Xu J; Liu Y; Peng R; Lee ST; Kang Z Chem Commun (Camb); 2011 Aug; 47(29):8316-8. PubMed ID: 21660335 [TBL] [Abstract][Full Text] [Related]
2. A competitive strategy coupled with endonuclease-assisted target recycling for DNA detection using silver-nanoparticle-tagged carbon nanospheres as labels. Zhu Z; Gao F; Lei J; Dong H; Ju H Chemistry; 2012 Oct; 18(43):13871-6. PubMed ID: 22987776 [TBL] [Abstract][Full Text] [Related]
3. Ionic liquid-functionalized graphene as modifier for electrochemical and electrocatalytic improvement: comparison of different carbon electrodes. Du M; Yang T; Ma S; Zhao C; Jiao K Anal Chim Acta; 2011 Apr; 690(2):169-74. PubMed ID: 21435472 [TBL] [Abstract][Full Text] [Related]
4. Study of interactions between DNA and aflatoxin B1 using electrochemical and fluorescence methods. Banitaba MH; Davarani SS; Mehdinia A Anal Biochem; 2011 Apr; 411(2):218-22. PubMed ID: 21238426 [TBL] [Abstract][Full Text] [Related]
5. Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Ambrosi A; Pumera M Phys Chem Chem Phys; 2010 Aug; 12(31):8943-7. PubMed ID: 20532301 [TBL] [Abstract][Full Text] [Related]
6. Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA. Zhu N; Lin Y; Yu P; Su L; Mao L Anal Chim Acta; 2009 Sep; 650(1):44-8. PubMed ID: 19720171 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical probe for the monitoring of DNA-protein interactions. Meunier-Prest R; Bouyon A; Rampazzi E; Raveau S; Andreoletti P; Cherkaoui-Malki M Biosens Bioelectron; 2010 Aug; 25(12):2598-602. PubMed ID: 20447818 [TBL] [Abstract][Full Text] [Related]
8. Construction of a carbon nanocomposite electrode based on amino acids functionalized gold nanoparticles for trace electrochemical detection of mercury. Safavi A; Farjami E Anal Chim Acta; 2011 Feb; 688(1):43-8. PubMed ID: 21296203 [TBL] [Abstract][Full Text] [Related]
9. A DNA-based electrochemical strategy for label-free monitoring the activity and inhibition of protein kinase. Xu X; Nie Z; Chen J; Fu Y; Li W; Shen Q; Yao S Chem Commun (Camb); 2009 Dec; (45):6946-8. PubMed ID: 19904356 [TBL] [Abstract][Full Text] [Related]
10. A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage. Qian J; Liu M; Gan L; Tripathi PK; Zhu D; Xu Z; Hao Z; Chen L; Wright DS Chem Commun (Camb); 2013 Apr; 49(29):3043-5. PubMed ID: 23467595 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of chronocoulometric DNA sensor based on gold nanoparticles/poly(l-lysine) modified glassy carbon electrode. Wang J; Zhang S; Zhang Y Anal Biochem; 2010 Jan; 396(2):304-9. PubMed ID: 19818728 [TBL] [Abstract][Full Text] [Related]
12. Ultrasensitive electrochemical DNA biosensors based on the detection of a highly characteristic solid-state process. Zhang J; Ting BP; Jana NR; Gao Z; Ying JY Small; 2009 Jun; 5(12):1414-7. PubMed ID: 19306302 [No Abstract] [Full Text] [Related]
13. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon. Zang J; Guo CX; Hu F; Yu L; Li CM Anal Chim Acta; 2011 Jan; 683(2):187-91. PubMed ID: 21167969 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of DNA functionalized carbon nanotubes/Cu(2+) complex by one-step electrodeposition and its sensitive determination of nitrite. Yang S; Xia B; Zeng X; Luo S; Wei W; Liu X Anal Chim Acta; 2010 May; 667(1-2):57-62. PubMed ID: 20441866 [TBL] [Abstract][Full Text] [Related]
15. Immobilization-free sequence-specific electrochemical detection of DNA using ferrocene-labeled peptide nucleic acid. Luo X; Lee TM; Hsing IM Anal Chem; 2008 Oct; 80(19):7341-6. PubMed ID: 18771276 [TBL] [Abstract][Full Text] [Related]
16. DNA-mediated assembly of weakly interacting DNA-binding protein subunits: in vitro recruitment of phage 434 repressor and yeast GCN4 DNA-binding domains. Guarnaccia C; Raman B; Zahariev S; Simoncsits A; Pongor S Nucleic Acids Res; 2004; 32(17):4992-5002. PubMed ID: 15388801 [TBL] [Abstract][Full Text] [Related]
17. A label-free electrochemical test for DNA-binding activities of tumor suppressor protein p53 using immunoprecipitation at magnetic beads. Nemcová K; Havran L; Sebest P; Brázdová M; Pivonková H; Fojta M Anal Chim Acta; 2010 Jun; 668(2):166-70. PubMed ID: 20493293 [TBL] [Abstract][Full Text] [Related]
18. Highly sensitive detection of silybin based on adsorptive stripping analysis at single-sided heated screen-printed carbon electrodes modified with multi-walled carbon nanotubes with direct current heating. Wu SH; Nie FH; Chen QZ; Sun JJ Anal Chim Acta; 2011 Feb; 687(1):43-9. PubMed ID: 21241844 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical synthesis of carbon nano spheres and its application for detection of ciprofloxacin. Ipte PR; Kumar S; Satpati AK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(2):142-150. PubMed ID: 31594467 [TBL] [Abstract][Full Text] [Related]
20. Multiplexed electrochemical DNA sensor for single-nucleotide polymorphism typing by using oligonucleotide-incorporated nonfouling surfaces. Wan Y; Lao R; Liu G; Song S; Wang L; Li D; Fan C J Phys Chem B; 2010 May; 114(19):6703-6. PubMed ID: 20415492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]