These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21660695)

  • 1. In vivo site-specific mutagenesis and gene collage using the delitto perfetto system in yeast Saccharomyces cerevisiae.
    Stuckey S; Mukherjee K; Storici F
    Methods Mol Biol; 2011; 745():173-91. PubMed ID: 21660695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae.
    Stuckey S; Storici F
    Methods Enzymol; 2013; 533():103-31. PubMed ID: 24182920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast.
    Storici F; Resnick MA
    Methods Enzymol; 2006; 409():329-45. PubMed ID: 16793410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of mutant alleles in Saccharomyces cerevisiae without cloning: overview and the delitto perfetto method.
    Moqtaderi Z; Geisberg JV
    Curr Protoc Mol Biol; 2013 Oct; 104():13.10C.1-13.10C.17. PubMed ID: 24510296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GAL1-SceI directed site-specific genomic (gsSSG) mutagenesis: a method for precisely targeting point mutations in S. cerevisiae.
    Piccirillo S; Wang HL; Fisher TJ; Honigberg SM
    BMC Biotechnol; 2011 Dec; 11():120. PubMed ID: 22141399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo site-directed mutagenesis using oligonucleotides.
    Storici F; Lewis LK; Resnick MA
    Nat Biotechnol; 2001 Aug; 19(8):773-6. PubMed ID: 11479573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delitto perfetto targeted mutagenesis in yeast with oligonucleotides.
    Storici F; Resnick MA
    Genet Eng (N Y); 2003; 25():189-207. PubMed ID: 15260239
    [No Abstract]   [Full Text] [Related]  

  • 8. Yeast-gene replacement using PCR products.
    Bergkessel M; Guthrie C; Abelson J
    Methods Enzymol; 2013; 533():43-55. PubMed ID: 24182917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic modification stimulated by the induction of a site-specific break distant from the locus of correction in haploid and diploid yeast Saccharomyces cerevisiae.
    Stuckey S; Storici F
    Methods Mol Biol; 2014; 1114():309-24. PubMed ID: 24557912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast.
    Storici F; Durham CL; Gordenin DA; Resnick MA
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14994-9. PubMed ID: 14630945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid and efficient one-step site-directed deletion, insertion, and substitution mutagenesis protocol.
    Wu D; Guo X; Lu J; Sun X; Li F; Chen Y; Xiao D
    Anal Biochem; 2013 Mar; 434(2):254-8. PubMed ID: 23256925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delitto Perfetto: foreign DNA disappears without a trace.
    Medlin J
    Environ Health Perspect; 2002 Feb; 110(2):A88-91. PubMed ID: 11836157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A marker-free genome editing method in
    Fréon K; Lambert SAE; Lobachev KS; Ait Saada A
    MicroPubl Biol; 2023; 2023():. PubMed ID: 37881245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating and targeting meiotic double-strand breaks in Saccharomyces cerevisiae.
    Nicolas A
    Methods Mol Biol; 2009; 557():27-33. PubMed ID: 19799174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step method for constructing unmarked insertions, deletions and allele substitutions in the yeast genome.
    Gray M; Piccirillo S; Honigberg SM
    FEMS Microbiol Lett; 2005 Jul; 248(1):31-6. PubMed ID: 15953696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae.
    Solis-Escalante D; Kuijpers NG; van der Linden FH; Pronk JT; Daran JM; Daran-Lapujade P
    FEMS Yeast Res; 2014 Aug; 14(5):741-54. PubMed ID: 24833416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM.
    Finney-Manchester SP; Maheshri N
    Nucleic Acids Res; 2013 May; 41(9):e99. PubMed ID: 23470991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single amino acid substitutions and deletions that alter the G protein coupling properties of the V2 vasopressin receptor identified in yeast by receptor random mutagenesis.
    Erlenbach I; Kostenis E; Schmidt C; Serradeil-Le Gal C; Raufaste D; Dumont ME; Pausch MH; Wess J
    J Biol Chem; 2001 Aug; 276(31):29382-92. PubMed ID: 11375990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae.
    Kuijpers NG; Chroumpi S; Vos T; Solis-Escalante D; Bosman L; Pronk JT; Daran JM; Daran-Lapujade P
    FEMS Yeast Res; 2013 Dec; 13(8):769-81. PubMed ID: 24028550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Rapid TALEN Assembly Protocol.
    Akmammedov A; Katsuyama T; Paro R
    Methods Mol Biol; 2016; 1480():269-81. PubMed ID: 27659992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.