These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21660695)

  • 21. A rapid method for localized mutagenesis of yeast genes.
    Muhlrad D; Hunter R; Parker R
    Yeast; 1992 Feb; 8(2):79-82. PubMed ID: 1561838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9.
    Mans R; Wijsman M; Daran-Lapujade P; Daran JM
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29860374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequencing Spo11 Oligonucleotides for Mapping Meiotic DNA Double-Strand Breaks in Yeast.
    Lam I; Mohibullah N; Keeney S
    Methods Mol Biol; 2017; 1471():51-98. PubMed ID: 28349390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted in Situ Mutagenesis of Histone Genes in Budding Yeast.
    Duina AA; Turkal CE
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide mapping of meiotic DNA double-strand breaks in Saccharomyces cerevisiae.
    Buhler C; Shroff R; Lichten M
    Methods Mol Biol; 2009; 557():143-64. PubMed ID: 19799181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precise Replacement of
    Yellman CM
    G3 (Bethesda); 2020 Sep; 10(9):3189-3200. PubMed ID: 32680853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-specific genomic (SSG) and random domain-localized (RDL) mutagenesis in yeast.
    Gray M; Kupiec M; Honigberg SM
    BMC Biotechnol; 2004 Apr; 4():7. PubMed ID: 15090068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manipulating the yeast genome: deletion, mutation, and tagging by PCR.
    Gardner JM; Jaspersen SL
    Methods Mol Biol; 2014; 1205():45-78. PubMed ID: 25213239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A two-step method for the introduction of single or multiple defined point mutations into the genome of Saccharomyces cerevisiae.
    Toulmay A; Schneiter R
    Yeast; 2006 Aug; 23(11):825-31. PubMed ID: 16921548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene disruption with PCR products in Saccharomyces cerevisiae.
    Lorenz MC; Muir RS; Lim E; McElver J; Weber SC; Heitman J
    Gene; 1995 May; 158(1):113-7. PubMed ID: 7789793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size of gene specific inverted repeat--dependent gene deletion In Saccharomyces cerevisiae.
    Lim C; Luhe AL; Jingying CT; Balagurunathan B; Wu J; Zhao H
    PLoS One; 2013; 8(8):e72137. PubMed ID: 23977230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
    DiCarlo JE; Norville JE; Mali P; Rios X; Aach J; Church GM
    Nucleic Acids Res; 2013 Apr; 41(7):4336-43. PubMed ID: 23460208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterologous overexpression and mutagenesis of the human bile salt export pump (ABCB11) using DREAM (Directed REcombination-Assisted Mutagenesis).
    Stindt J; Ellinger P; Stross C; Keitel V; Häussinger D; Smits SH; Kubitz R; Schmitt L
    PLoS One; 2011; 6(5):e20562. PubMed ID: 21655228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells.
    Katz SS; Gimble FS; Storici F
    PLoS One; 2014; 9(2):e88840. PubMed ID: 24558436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcript-RNA-templated DNA recombination and repair.
    Keskin H; Shen Y; Huang F; Patel M; Yang T; Ashley K; Mazin AV; Storici F
    Nature; 2014 Nov; 515(7527):436-9. PubMed ID: 25186730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo site-directed mutagenesis of yeast plasmids using a three-fragment homologous recombination system.
    Kitagawa K; Abdulle R
    Biotechniques; 2002 Aug; 33(2):288, 290, 292 passim. PubMed ID: 12188178
    [No Abstract]   [Full Text] [Related]  

  • 37. Directed Evolution Method in Saccharomyces cerevisiae: Mutant Library Creation and Screening.
    Viña-Gonzalez J; Gonzalez-Perez D; Alcalde M
    J Vis Exp; 2016 Apr; (110):e53761. PubMed ID: 27077451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination.
    Smith J; Rothstein R
    Mol Cell Biol; 1995 Mar; 15(3):1632-41. PubMed ID: 7862154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of the meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes.
    Fernández-Martínez LT; Bibb MJ
    Sci Rep; 2014 Nov; 4():7100. PubMed ID: 25403842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events.
    Kramer KM; Brock JA; Bloom K; Moore JK; Haber JE
    Mol Cell Biol; 1994 Feb; 14(2):1293-301. PubMed ID: 8289808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.