These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21660695)

  • 41. Targeted mutagenesis in the progeny of maize transgenic plants.
    Yang M; Djukanovic V; Stagg J; Lenderts B; Bidney D; Falco SC; Lyznik LA
    Plant Mol Biol; 2009 Aug; 70(6):669-79. PubMed ID: 19466565
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo cloning by homologous recombination in yeast using a two-plasmid-based system.
    Degryse E; Dumas B; Dietrich M; Laruelle L; Achstetter T
    Yeast; 1995 Jun; 11(7):629-40. PubMed ID: 7483836
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) for directed enzyme evolution.
    Gonzalez-Perez D; Molina-Espeja P; Garcia-Ruiz E; Alcalde M
    PLoS One; 2014; 9(3):e90919. PubMed ID: 24614282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae.
    Ivanov EL; Sugawara N; White CI; Fabre F; Haber JE
    Mol Cell Biol; 1994 May; 14(5):3414-25. PubMed ID: 8164689
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expanding the CRISPR/Cas9 Toolbox for Gene Engineering in S. cerevisiae.
    Levi O; Arava Y
    Curr Microbiol; 2020 Mar; 77(3):468-478. PubMed ID: 31901956
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mutagenesis protocols in Saccharomyces cerevisiae by in vivo overlap extension.
    Alcalde M
    Methods Mol Biol; 2010; 634():3-14. PubMed ID: 20676972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integration of an insertion-type transferred DNA vector from Agrobacterium tumefaciens into the Saccharomyces cerevisiae genome by gap repair.
    Risseeuw E; Franke-van Dijk ME; Hooykaas PJ
    Mol Cell Biol; 1996 Oct; 16(10):5924-32. PubMed ID: 8816506
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of disruption cassettes in vivo using a PCR product and Saccharomyces cerevisiae.
    Zaragoza O
    J Microbiol Methods; 2003 Jan; 52(1):141-5. PubMed ID: 12401237
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Site-directed mutagenesis.
    Carrigan PE; Ballar P; Tuzmen S
    Methods Mol Biol; 2011; 700():107-24. PubMed ID: 21204030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Site-directed, recombination-mediated mutagenesis of a complex gene locus.
    Barton MC; Hoekstra MF; Emerson BM
    Nucleic Acids Res; 1990 Dec; 18(24):7349-55. PubMed ID: 2175433
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination.
    Zhang Q; Chen QH; Fu ML; Wang JL; Zhang HB; He GQ
    J Zhejiang Univ Sci B; 2008 Jul; 9(7):527-35. PubMed ID: 18600782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitation and analysis of the formation of HO-endonuclease stimulated chromosomal translocations by single-strand annealing in Saccharomyces cerevisiae.
    Liddell L; Manthey G; Pannunzio N; Bailis A
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968396
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52.
    Firmenich AA; Elias-Arnanz M; Berg P
    Mol Cell Biol; 1995 Mar; 15(3):1620-31. PubMed ID: 7862153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of RNA-templated double-strand break repair in yeast.
    Shen Y; Storici F
    Methods Mol Biol; 2011; 745():193-204. PubMed ID: 21660696
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multichange isothermal mutagenesis: a new strategy for multiple site-directed mutations in plasmid DNA.
    Mitchell LA; Cai Y; Taylor M; Noronha AM; Chuang J; Dai L; Boeke JD
    ACS Synth Biol; 2013 Aug; 2(8):473-7. PubMed ID: 23654272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast.
    Noskov VN; Segall-Shapiro TH; Chuang RY
    Nucleic Acids Res; 2010 May; 38(8):2570-6. PubMed ID: 20228123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Progress of targeted genome modification approaches in higher plants.
    Cardi T; Neal Stewart C
    Plant Cell Rep; 2016 Jul; 35(7):1401-16. PubMed ID: 27025856
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rad52 and Rad59 exhibit both overlapping and distinct functions.
    Feng Q; Düring L; de Mayolo AA; Lettier G; Lisby M; Erdeniz N; Mortensen UH; Rothstein R
    DNA Repair (Amst); 2007 Jan; 6(1):27-37. PubMed ID: 16987715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulating DNA Repair Pathways to Diversify Genomic Alterations in Saccharomyces cerevisiae.
    Wang Z; Lin Y; Dai Z; Wang Q
    Microbiol Spectr; 2022 Apr; 10(2):e0232621. PubMed ID: 35352941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.