These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 21660974)
1. Randomly methylated β-cyclodextrin derivatives enhance taxol permeability through human intestinal epithelial Caco-2 cell monolayer. Fenyvesi F; Kiss T; Fenyvesi E; Szente L; Veszelka S; Deli MA; Váradi J; Fehér P; Ujhelyi Z; Tósaki A; Vecsernyés M; Bácskay I J Pharm Sci; 2011 Nov; 100(11):4734-44. PubMed ID: 21660974 [TBL] [Abstract][Full Text] [Related]
2. In vitro cytotoxicity of paclitaxel/beta-cyclodextrin complexes for HIPEC. Bouquet W; Boterberg T; Ceelen W; Pattyn P; Peeters M; Bracke M; Remon JP; Vervaet C Int J Pharm; 2009 Feb; 367(1-2):148-54. PubMed ID: 18938234 [TBL] [Abstract][Full Text] [Related]
3. [Cytotoxic examinations of various cyclodextrin derivatives on Caco-2 cells]. Kiss T; Fenyvesi F; Kovácsné BI; Fehér P; Leposáné KR; Váradi J; Szente L; Fenyvesi E; Iványi R; Vecsernyés M Acta Pharm Hung; 2007; 77(2):150-4. PubMed ID: 17933275 [TBL] [Abstract][Full Text] [Related]
4. Taxol transport by human intestinal epithelial Caco-2 cells. Walle UK; Walle T Drug Metab Dispos; 1998 Apr; 26(4):343-6. PubMed ID: 9531522 [TBL] [Abstract][Full Text] [Related]
5. Contribution of P-glycoprotein to the enhancing effects of dimethyl-beta-cyclodextrin on oral bioavailability of tacrolimus. Arima H; Yunomae K; Hirayama F; Uekama K J Pharmacol Exp Ther; 2001 May; 297(2):547-55. PubMed ID: 11303042 [TBL] [Abstract][Full Text] [Related]
6. Cyclodextrin Complexation Improves the Solubility and Caco-2 Permeability of Chrysin. Fenyvesi F; Nguyen TLP; Haimhoffer Á; Rusznyák Á; Vasvári G; Bácskay I; Vecsernyés M; Ignat SR; Dinescu S; Costache M; Ciceu A; Hermenean A; Váradi J Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824341 [TBL] [Abstract][Full Text] [Related]
7. Improvement of oxaprozin solubility and permeability by the combined use of cyclodextrin, chitosan, and bile components. Maestrelli F; Cirri M; Mennini N; Zerrouk N; Mura P Eur J Pharm Biopharm; 2011 Aug; 78(3):385-93. PubMed ID: 21439375 [TBL] [Abstract][Full Text] [Related]
8. Fluorescently labeled methyl-beta-cyclodextrin enters intestinal epithelial Caco-2 cells by fluid-phase endocytosis. Fenyvesi F; Réti-Nagy K; Bacsó Z; Gutay-Tóth Z; Malanga M; Fenyvesi É; Szente L; Váradi J; Ujhelyi Z; Fehér P; Szabó G; Vecsernyés M; Bácskay I PLoS One; 2014; 9(1):e84856. PubMed ID: 24416301 [TBL] [Abstract][Full Text] [Related]
9. Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures. Mangas-Sanjuan V; Gutiérrez-Nieto J; Echezarreta-López M; González-Álvarez I; González-Álvarez M; Casabó VG; Bermejo M; Landin M Eur J Drug Metab Pharmacokinet; 2016 Dec; 41(6):795-806. PubMed ID: 26602766 [TBL] [Abstract][Full Text] [Related]
10. Effect of β-cyclodextrin derivatives on the diosgenin absorption in Caco-2 cell monolayer and rats. Okawara M; Tokudome Y; Todo H; Sugibayashi K; Hashimoto F Biol Pharm Bull; 2014; 37(1):54-9. PubMed ID: 24389481 [TBL] [Abstract][Full Text] [Related]
11. Sparing methylation of beta-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. Salem LB; Bosquillon C; Dailey LA; Delattre L; Martin GP; Evrard B; Forbes B J Control Release; 2009 Jun; 136(2):110-6. PubMed ID: 19331849 [TBL] [Abstract][Full Text] [Related]
12. Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery. Réti-Nagy K; Malanga M; Fenyvesi É; Szente L; Vámosi G; Váradi J; Bácskay I; Fehér P; Ujhelyi Z; Róka E; Vecsernyés M; Balogh G; Vasvári G; Fenyvesi F Int J Pharm; 2015 Dec; 496(2):509-17. PubMed ID: 26498369 [TBL] [Abstract][Full Text] [Related]
13. Erlotinib complexation with randomly methylated Erdoğar N; Akkın S; Varan G; Bilensoy E Pharm Dev Technol; 2021 Sep; 26(7):797-806. PubMed ID: 34219578 [TBL] [Abstract][Full Text] [Related]
14. Mathematical modelling of the transport of hydroxypropyl-β-cyclodextrin inclusion complexes of ranitidine hydrochloride and furosemide loaded chitosan nanoparticles across a Caco-2 cell monolayer. Sadighi A; Ostad SN; Rezayat SM; Foroutan M; Faramarzi MA; Dorkoosh FA Int J Pharm; 2012 Jan; 422(1-2):479-88. PubMed ID: 22101294 [TBL] [Abstract][Full Text] [Related]
15. Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood-brain barrier in vitro and in situ. Rice A; Liu Y; Michaelis ML; Himes RH; Georg GI; Audus KL J Med Chem; 2005 Feb; 48(3):832-8. PubMed ID: 15689167 [TBL] [Abstract][Full Text] [Related]
16. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Mo R; Jin X; Li N; Ju C; Sun M; Zhang C; Ping Q Biomaterials; 2011 Jul; 32(20):4609-20. PubMed ID: 21440934 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the cytotoxicity of beta-cyclodextrin derivatives: evidence for the role of cholesterol extraction. Kiss T; Fenyvesi F; Bácskay I; Váradi J; Fenyvesi E; Iványi R; Szente L; Tósaki A; Vecsernyés M Eur J Pharm Sci; 2010 Jul; 40(4):376-80. PubMed ID: 20434542 [TBL] [Abstract][Full Text] [Related]
18. Transport of a hydrophilic paclitaxel derivative, 7-xylosyl-10-deacetylpaclitaxel, by human intestinal epithelial Caco-2 cells. Jiang S; Zu Y; Zhang Y; Fu Y; Wang Z; Wang J Planta Med; 2010 Oct; 76(14):1592-5. PubMed ID: 20414861 [TBL] [Abstract][Full Text] [Related]
19. Influence on intestinal mucous permeation of paclitaxel of absorption enhancers and dosage forms based on electron spin resonance spectroscopy. Zhang XN; Xu J; Tang LH; Gong J; Yan XY; Zhang Q Pharmazie; 2007 May; 62(5):368-71. PubMed ID: 17557746 [TBL] [Abstract][Full Text] [Related]