These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21661119)

  • 21. Identification of betaIII- and betaIV-tubulin isotypes in cold-adapted microtubules from Atlantic cod (Gadus morhua): antibody mapping and cDNA sequencing.
    Modig C; Olsson PE; Barasoain I; de Ines C; Andreu JM; Roach MC; Ludueña RF; Wallin M
    Cell Motil Cytoskeleton; 1999; 42(4):315-30. PubMed ID: 10223637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinesin-1 translocation: Surprising differences between bovine brain and MCF7-derived microtubules.
    Feizabadi MS; Jun Y
    Biochem Biophys Res Commun; 2014 Nov; 454(4):543-6. PubMed ID: 25450690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrostatic differences: A possible source for the functional differences between MCF7 and brain microtubules.
    Feizabadi MS; Rosario B; Hernandez MAV
    Biochem Biophys Res Commun; 2017 Nov; 493(1):388-392. PubMed ID: 28887032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Over-expression of betaI tubulin in MDCK cells and incorporation of exogenous betaI tubulin into microtubules interferes with adhesion and spreading.
    Lezama R; Castillo A; Ludueña RF; Meza I
    Cell Motil Cytoskeleton; 2001 Nov; 50(3):147-60. PubMed ID: 11807936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinctions between dynamic characteristics of the single EG5 motor protein along neural vs. cancerous microtubules.
    Feizabadi MS; Jun Y; Reddy JN
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1630-3. PubMed ID: 27590585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different assembly properties of cod, bovine, and rat brain microtubules.
    Fridén B; Strömberg E; Wallin M
    Cell Motil Cytoskeleton; 1992; 21(4):305-12. PubMed ID: 1628326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding of vinblastine to stabilized microtubules.
    Singer WD; Jordan MA; Wilson L; Himes RH
    Mol Pharmacol; 1989 Sep; 36(3):366-70. PubMed ID: 2571072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ.
    de Pereda JM; Leynadier D; Evangelio JA; Chacón P; Andreu JM
    Biochemistry; 1996 Nov; 35(45):14203-15. PubMed ID: 8916905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro analysis of microtubule assembly of isotypically pure tubulin dimers. Intrinsic differences in the assembly properties of alpha beta II, alpha beta III, and alpha beta IV tubulin dimers in the absence of microtubule-associated proteins.
    Lu Q; Luduena RF
    J Biol Chem; 1994 Jan; 269(3):2041-7. PubMed ID: 8294455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different effects of vinblastine on the polymerization of isotypically purified tubulins from bovine brain.
    Khan IA; Ludueña RF
    Invest New Drugs; 2003 Feb; 21(1):3-13. PubMed ID: 12795525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microtubule-associated proteins and the flexibility of microtubules.
    Kurz JC; Williams RC
    Biochemistry; 1995 Oct; 34(41):13374-80. PubMed ID: 7577923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring microtubule persistence length using a microtubule gliding assay.
    Martin DS
    Methods Cell Biol; 2013; 115():13-25. PubMed ID: 23973063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microtubule assembly of isotypically purified tubulin and its mixtures.
    Rezania V; Azarenko O; Jordan MA; Bolterauer H; Ludueña RF; Huzil JT; Tuszynski JA
    Biophys J; 2008 Aug; 95(4):1993-2008. PubMed ID: 18502790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different microtubule network alterations induced by pachymatismin, a new marine glycoprotein, on two prostatic cell lines.
    Sangrajrang S; Zidane M; Berda P; Moré MT; Calvo F; Fellous A
    Cancer Chemother Pharmacol; 2000; 45(2):120-6. PubMed ID: 10663626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microtubule solutions display nematic liquid crystalline structure.
    Hitt AL; Cross AR; Williams RC
    J Biol Chem; 1990 Jan; 265(3):1639-47. PubMed ID: 2295647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copolymerization of two distinct tubulin isotypes during microtubule assembly in vitro.
    Baker HN; Rothwell SW; Grasser WA; Wallis KT; Murphy DB
    J Cell Biol; 1990 Jan; 110(1):97-104. PubMed ID: 2295686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexural rigidity of individual microtubules measured by a buckling force with optical traps.
    Kikumoto M; Kurachi M; Tosa V; Tashiro H
    Biophys J; 2006 Mar; 90(5):1687-96. PubMed ID: 16339879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microtubule dynamics in vitro are regulated by the tubulin isotype composition.
    Panda D; Miller HP; Banerjee A; Ludueña RF; Wilson L
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11358-62. PubMed ID: 7972064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsically slow dynamic instability of HeLa cell microtubules in vitro.
    Newton CN; DeLuca JG; Himes RH; Miller HP; Jordan MA; Wilson L
    J Biol Chem; 2002 Nov; 277(45):42456-62. PubMed ID: 12207023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity.
    Janson ME; Dogterom M
    Biophys J; 2004 Oct; 87(4):2723-36. PubMed ID: 15454464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.